Limits...
The anodal tDCS over the left posterior parietal cortex enhances attention toward a focus word in a sentence.

Minamoto T, Azuma M, Yaoi K, Ashizuka A, Mima T, Osaka M, Fukuyama H, Osaka N - Front Hum Neurosci (2014)

Bottom Line: Such an effect was not observed in the ctDCS group.As for the recognition task, atDCS again produced the augmented effect of the focused words in the distractor recognition.The results indicate that atDCS promotes stimulus-driven attentional processing, possibly by affecting neural firing in the inferior parietal regions.

View Article: PubMed Central - PubMed

Affiliation: Department of Advanced Human Sciences, Graduate School of Human Sciences, Osaka University Osaka, Japan.

ABSTRACT
The posterior parietal cortex (PPC) has two attentional functions: top-down attentional control and stimulus-driven attentional processing. Using the focused version of the reading span test (RST), in which the target word to be remembered is the critical word for comprehending a sentence (focused word) or a non-focused word, we examined the effect of tDCS on resolution of distractor interference by the focused word in the non-focus condition (top-down attentional control) and on augmented/shrunk attentional capture by the focused word in both the focus and non-focus conditions (stimulus-driven attentional processing). Participants were divided into two groups: anodal tDCS (atDCS) and cathodal tDCS (ctDCS). Online stimulation was given while participants performed the RST. A post-hoc recognition task was also administered in which three kinds of words were presented: target words in the RST, distractor words in the RST, and novel words. atDCS augmented the effect of the focused word by increasing differences in performance between the focus and non-focus conditions. Such an effect was not observed in the ctDCS group. As for the recognition task, atDCS again produced the augmented effect of the focused words in the distractor recognition. On the other hand, ctDCS brought less recognition of non-focused target words in comparison to sham. The results indicate that atDCS promotes stimulus-driven attentional processing, possibly by affecting neural firing in the inferior parietal regions. In contrast, ctDCS appears to prevent retrieval of less important information from episodic memory, which may require top-down attentional processing.

No MeSH data available.


Recall performance of the Reading Span Test (RST) in the focus and non-focus conditions. atDCS produced augmented difference in recall performance between the focus and non-focus conditions, in comparison to the sham stimulation. Such effect was not observed in the ctDCS group.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4260498&req=5

Figure 3: Recall performance of the Reading Span Test (RST) in the focus and non-focus conditions. atDCS produced augmented difference in recall performance between the focus and non-focus conditions, in comparison to the sham stimulation. Such effect was not observed in the ctDCS group.

Mentions: In the atDCS group, atDCS augmented difference in recall performance between the focus and the non-focus conditions, comparing with the sham stimulation. (Figure 3). A repeated ANOVA showed a significant main effect of the focus manipulation [F(1, 15) = 14.53, p < 0.005], but not of brain stimulation [F(1, 15) = 0.16, p > 0.05]. In the atDCS condition, a significant interaction was obtained [F(1, 15) = 5.45, p < 0.05] and post-hoc analysis for a simple main effect of the focus condition showed a significant effect in the DC condition [F(1, 15) = 20.17, p < 0.001]. The effect was only marginal for the sham condition [F(1, 15) = 3.22, p < 0.10]. Simple main effects of brain stimulation were not significant in either the focus condition [F(1, 15) = 3.04, p > 0.05] or non-focus condition [F(1, 15) = 1.30, p > 0.05]. Therefore, the obtained interaction was attributed to an augmented effect of the focus manipulation by the atDCS.


The anodal tDCS over the left posterior parietal cortex enhances attention toward a focus word in a sentence.

Minamoto T, Azuma M, Yaoi K, Ashizuka A, Mima T, Osaka M, Fukuyama H, Osaka N - Front Hum Neurosci (2014)

Recall performance of the Reading Span Test (RST) in the focus and non-focus conditions. atDCS produced augmented difference in recall performance between the focus and non-focus conditions, in comparison to the sham stimulation. Such effect was not observed in the ctDCS group.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4260498&req=5

Figure 3: Recall performance of the Reading Span Test (RST) in the focus and non-focus conditions. atDCS produced augmented difference in recall performance between the focus and non-focus conditions, in comparison to the sham stimulation. Such effect was not observed in the ctDCS group.
Mentions: In the atDCS group, atDCS augmented difference in recall performance between the focus and the non-focus conditions, comparing with the sham stimulation. (Figure 3). A repeated ANOVA showed a significant main effect of the focus manipulation [F(1, 15) = 14.53, p < 0.005], but not of brain stimulation [F(1, 15) = 0.16, p > 0.05]. In the atDCS condition, a significant interaction was obtained [F(1, 15) = 5.45, p < 0.05] and post-hoc analysis for a simple main effect of the focus condition showed a significant effect in the DC condition [F(1, 15) = 20.17, p < 0.001]. The effect was only marginal for the sham condition [F(1, 15) = 3.22, p < 0.10]. Simple main effects of brain stimulation were not significant in either the focus condition [F(1, 15) = 3.04, p > 0.05] or non-focus condition [F(1, 15) = 1.30, p > 0.05]. Therefore, the obtained interaction was attributed to an augmented effect of the focus manipulation by the atDCS.

Bottom Line: Such an effect was not observed in the ctDCS group.As for the recognition task, atDCS again produced the augmented effect of the focused words in the distractor recognition.The results indicate that atDCS promotes stimulus-driven attentional processing, possibly by affecting neural firing in the inferior parietal regions.

View Article: PubMed Central - PubMed

Affiliation: Department of Advanced Human Sciences, Graduate School of Human Sciences, Osaka University Osaka, Japan.

ABSTRACT
The posterior parietal cortex (PPC) has two attentional functions: top-down attentional control and stimulus-driven attentional processing. Using the focused version of the reading span test (RST), in which the target word to be remembered is the critical word for comprehending a sentence (focused word) or a non-focused word, we examined the effect of tDCS on resolution of distractor interference by the focused word in the non-focus condition (top-down attentional control) and on augmented/shrunk attentional capture by the focused word in both the focus and non-focus conditions (stimulus-driven attentional processing). Participants were divided into two groups: anodal tDCS (atDCS) and cathodal tDCS (ctDCS). Online stimulation was given while participants performed the RST. A post-hoc recognition task was also administered in which three kinds of words were presented: target words in the RST, distractor words in the RST, and novel words. atDCS augmented the effect of the focused word by increasing differences in performance between the focus and non-focus conditions. Such an effect was not observed in the ctDCS group. As for the recognition task, atDCS again produced the augmented effect of the focused words in the distractor recognition. On the other hand, ctDCS brought less recognition of non-focused target words in comparison to sham. The results indicate that atDCS promotes stimulus-driven attentional processing, possibly by affecting neural firing in the inferior parietal regions. In contrast, ctDCS appears to prevent retrieval of less important information from episodic memory, which may require top-down attentional processing.

No MeSH data available.