Limits...
Anti-IGF-1R monoclonal antibody inhibits the carcinogenicity activity of acquired trastuzumab-resistant SKOV3.

Wang W, Zhang Y, Lv M, Feng J, Peng H, Geng J, Lin Z, Zhou T, Li X, Shen B, Ma Y, Qiao C - J Ovarian Res (2014)

Bottom Line: Reversing the resistance often results in better clinical therapeutic effect.It was also confirmed preliminarily that the mechanism of antibody might be to inhibit the activation of IGF-1R and downstream MAPK, AKT pathway transduction.In similar cases, not only acquired but also de novo, good curative effect might be achieved using combined antibody therapy strategies.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Cellular and Molecular Immunology, Institute of Immunology, Henan University, Kaifeng, 475001, China. 1790735517@qq.com.

ABSTRACT

Background: Antibody resistance, not only de novo but also acquired cases, usually exists and is related with lower survival rate and high risk of recurrence. Reversing the resistance often results in better clinical therapeutic effect. Previously, we established a trastuzumab-resistant ovarian cancer cell line, named as SKOV3-T, with lower HER2 and induced higher IGF-1R expression level to keep cell survival.

Methods: IGF-1R was identified important for SKOV3-T growth. Then, a novel anti-IGF-1R monoclonal antibody, named as LMAb1, was used to inhibit SKOV3-T in cell growth/proliferation, migration, clone formation and in vivo carcinogenicity.

Results: In both in vitro and in vivo assays, LMAb1 showed effective anti-tumor function, especially when being used in combination with trastuzumab, which was beneficial to longer survival time of mice as well as smaller tumor. It was also confirmed preliminarily that the mechanism of antibody might be to inhibit the activation of IGF-1R and downstream MAPK, AKT pathway transduction.

Conclusion: We achieved satisfactory anti-tumor activity using trastuzumab plus LMAb1 in trastuzumab-resistant ovarian cancer model. In similar cases, not only acquired but also de novo, good curative effect might be achieved using combined antibody therapy strategies.

Show MeSH

Related in: MedlinePlus

LMAb1could inhibit the proliferation of SKOV3-T. (A) LMAb1 could inhibit cell proliferation of SKOV3-T at a dose dependent manner. Similarly, the character of clone formation (B) and invasion/migration identified by transwell assay (C) could also be inhibited by LMAb1 in resistant SKOV3-T cells; (D & E)in vivo immunotherapy of LMAb1 combined with/without trastuzumab to SKOV3-T xenograft model in nude mice. D: mean tumor volume and E: overall survival rate; (F) LMAb1 could inhibit IGF-1R signal pathway transduction, for it could inhibit the MAPK and AKT activation stimulated by IGF-1. Presumably, for IGF-1R was dramatically up-regulated in acquired trastuzumab-resistant SKOV3-T cells, specific anti-IGF-1R antibody (LMAb1) could block the IGF-1R-driven signal cascade in order to help slower cell growth, reduce clone formation, shorten S-phase, and inhibit invasion and migration of cells.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4260252&req=5

Fig4: LMAb1could inhibit the proliferation of SKOV3-T. (A) LMAb1 could inhibit cell proliferation of SKOV3-T at a dose dependent manner. Similarly, the character of clone formation (B) and invasion/migration identified by transwell assay (C) could also be inhibited by LMAb1 in resistant SKOV3-T cells; (D & E)in vivo immunotherapy of LMAb1 combined with/without trastuzumab to SKOV3-T xenograft model in nude mice. D: mean tumor volume and E: overall survival rate; (F) LMAb1 could inhibit IGF-1R signal pathway transduction, for it could inhibit the MAPK and AKT activation stimulated by IGF-1. Presumably, for IGF-1R was dramatically up-regulated in acquired trastuzumab-resistant SKOV3-T cells, specific anti-IGF-1R antibody (LMAb1) could block the IGF-1R-driven signal cascade in order to help slower cell growth, reduce clone formation, shorten S-phase, and inhibit invasion and migration of cells.

Mentions: Since the trastuzumab resistant SKOV3-T cells have higher IGF-1R level than parental SKOV3 cells, a novel anti-IGF-1R mAb, named as LMAb1, was screened out from a natural fully human phage library in our lab (Chinese patent: 201410271608.8). Here, in SKOV3-T cells, LMAb1 could inhibit cell proliferation, for in 10 μg/ml LMAb1 treated samples, cell survival rate was ~75% contrasting to non-treated groups (Figure 4A); meanwhile, the agar clone formation of SKOV3-T was also inhibited by LMAb1. When the concentration of antibody reached 50 μg/ml, the average clone number was ~757 contrasting to ~1102 of SKOV3-T (Figure 4B); furthermore, in transwell assay, the migration capacity was inhibited on a dose dependent manner, for after 15 hours, about 300 SKOV3-T cells per well were migrated, while less cells moved across the hole in antibody treated samples. Here, four different scales of each sample were photographed and counted. Contrasting to the control sample (the mean cell number of each scale was about 30), the 100 μg/ml antibody treated sample showed less than 10 migrated cells (Figure 4C); In in vivo experiments, LMAb1 showed certain anti-tumor capacity, especially in the groups treated with LMAb1 combined with trastuzumab. In contrast to the SKOV3-T group with the mean tumor volume of ~1161 mm3 and the trastuzumab treated group (~1123 mm3), the groups administrated with LMAb1, whether alone or plus trastuzumab, has the mean tumor volume of 600 ~ 700 mm3 (Figure 4D). More interestingly, the mean survival time of LMAb1 plus trastuzumab treated mice was much longer. As shown in Figure 4E, in week 8, about half of LMAb1 plus trastuzumab treated mice survived, while there was only one or fewer mice was still alive in other groups. For the IGF-1R is essentially expressed by most organs and tissues, therefore anti-IGF-1R antibody such as LMAb1 might have side-effects, which may influence the survival rate of mice as well as the anti-tumor effects. According to the cell signaling assays shown in Figure 4F, LMAb1 could block the IGF-1 induced activation of pERK, pAKT and pIGF-1R along with the increase concentration of LMAb1, indicating that inhibition of PI3K-AKT as well as MAPK cascade might be one of the anti-tumor mechanisms of anti-IGF-1R antibody LMAb1.Figure 4


Anti-IGF-1R monoclonal antibody inhibits the carcinogenicity activity of acquired trastuzumab-resistant SKOV3.

Wang W, Zhang Y, Lv M, Feng J, Peng H, Geng J, Lin Z, Zhou T, Li X, Shen B, Ma Y, Qiao C - J Ovarian Res (2014)

LMAb1could inhibit the proliferation of SKOV3-T. (A) LMAb1 could inhibit cell proliferation of SKOV3-T at a dose dependent manner. Similarly, the character of clone formation (B) and invasion/migration identified by transwell assay (C) could also be inhibited by LMAb1 in resistant SKOV3-T cells; (D & E)in vivo immunotherapy of LMAb1 combined with/without trastuzumab to SKOV3-T xenograft model in nude mice. D: mean tumor volume and E: overall survival rate; (F) LMAb1 could inhibit IGF-1R signal pathway transduction, for it could inhibit the MAPK and AKT activation stimulated by IGF-1. Presumably, for IGF-1R was dramatically up-regulated in acquired trastuzumab-resistant SKOV3-T cells, specific anti-IGF-1R antibody (LMAb1) could block the IGF-1R-driven signal cascade in order to help slower cell growth, reduce clone formation, shorten S-phase, and inhibit invasion and migration of cells.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4260252&req=5

Fig4: LMAb1could inhibit the proliferation of SKOV3-T. (A) LMAb1 could inhibit cell proliferation of SKOV3-T at a dose dependent manner. Similarly, the character of clone formation (B) and invasion/migration identified by transwell assay (C) could also be inhibited by LMAb1 in resistant SKOV3-T cells; (D & E)in vivo immunotherapy of LMAb1 combined with/without trastuzumab to SKOV3-T xenograft model in nude mice. D: mean tumor volume and E: overall survival rate; (F) LMAb1 could inhibit IGF-1R signal pathway transduction, for it could inhibit the MAPK and AKT activation stimulated by IGF-1. Presumably, for IGF-1R was dramatically up-regulated in acquired trastuzumab-resistant SKOV3-T cells, specific anti-IGF-1R antibody (LMAb1) could block the IGF-1R-driven signal cascade in order to help slower cell growth, reduce clone formation, shorten S-phase, and inhibit invasion and migration of cells.
Mentions: Since the trastuzumab resistant SKOV3-T cells have higher IGF-1R level than parental SKOV3 cells, a novel anti-IGF-1R mAb, named as LMAb1, was screened out from a natural fully human phage library in our lab (Chinese patent: 201410271608.8). Here, in SKOV3-T cells, LMAb1 could inhibit cell proliferation, for in 10 μg/ml LMAb1 treated samples, cell survival rate was ~75% contrasting to non-treated groups (Figure 4A); meanwhile, the agar clone formation of SKOV3-T was also inhibited by LMAb1. When the concentration of antibody reached 50 μg/ml, the average clone number was ~757 contrasting to ~1102 of SKOV3-T (Figure 4B); furthermore, in transwell assay, the migration capacity was inhibited on a dose dependent manner, for after 15 hours, about 300 SKOV3-T cells per well were migrated, while less cells moved across the hole in antibody treated samples. Here, four different scales of each sample were photographed and counted. Contrasting to the control sample (the mean cell number of each scale was about 30), the 100 μg/ml antibody treated sample showed less than 10 migrated cells (Figure 4C); In in vivo experiments, LMAb1 showed certain anti-tumor capacity, especially in the groups treated with LMAb1 combined with trastuzumab. In contrast to the SKOV3-T group with the mean tumor volume of ~1161 mm3 and the trastuzumab treated group (~1123 mm3), the groups administrated with LMAb1, whether alone or plus trastuzumab, has the mean tumor volume of 600 ~ 700 mm3 (Figure 4D). More interestingly, the mean survival time of LMAb1 plus trastuzumab treated mice was much longer. As shown in Figure 4E, in week 8, about half of LMAb1 plus trastuzumab treated mice survived, while there was only one or fewer mice was still alive in other groups. For the IGF-1R is essentially expressed by most organs and tissues, therefore anti-IGF-1R antibody such as LMAb1 might have side-effects, which may influence the survival rate of mice as well as the anti-tumor effects. According to the cell signaling assays shown in Figure 4F, LMAb1 could block the IGF-1 induced activation of pERK, pAKT and pIGF-1R along with the increase concentration of LMAb1, indicating that inhibition of PI3K-AKT as well as MAPK cascade might be one of the anti-tumor mechanisms of anti-IGF-1R antibody LMAb1.Figure 4

Bottom Line: Reversing the resistance often results in better clinical therapeutic effect.It was also confirmed preliminarily that the mechanism of antibody might be to inhibit the activation of IGF-1R and downstream MAPK, AKT pathway transduction.In similar cases, not only acquired but also de novo, good curative effect might be achieved using combined antibody therapy strategies.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Cellular and Molecular Immunology, Institute of Immunology, Henan University, Kaifeng, 475001, China. 1790735517@qq.com.

ABSTRACT

Background: Antibody resistance, not only de novo but also acquired cases, usually exists and is related with lower survival rate and high risk of recurrence. Reversing the resistance often results in better clinical therapeutic effect. Previously, we established a trastuzumab-resistant ovarian cancer cell line, named as SKOV3-T, with lower HER2 and induced higher IGF-1R expression level to keep cell survival.

Methods: IGF-1R was identified important for SKOV3-T growth. Then, a novel anti-IGF-1R monoclonal antibody, named as LMAb1, was used to inhibit SKOV3-T in cell growth/proliferation, migration, clone formation and in vivo carcinogenicity.

Results: In both in vitro and in vivo assays, LMAb1 showed effective anti-tumor function, especially when being used in combination with trastuzumab, which was beneficial to longer survival time of mice as well as smaller tumor. It was also confirmed preliminarily that the mechanism of antibody might be to inhibit the activation of IGF-1R and downstream MAPK, AKT pathway transduction.

Conclusion: We achieved satisfactory anti-tumor activity using trastuzumab plus LMAb1 in trastuzumab-resistant ovarian cancer model. In similar cases, not only acquired but also de novo, good curative effect might be achieved using combined antibody therapy strategies.

Show MeSH
Related in: MedlinePlus