Limits...
Cysteamine (Lynovex®), a novel mucoactive antimicrobial & antibiofilm agent for the treatment of cystic fibrosis.

Charrier C, Rodger C, Robertson J, Kowalczuk A, Shand N, Fraser-Pitt D, Mercer D, O'Neil D - Orphanet J Rare Dis (2014)

Bottom Line: Any successful therapeutic strategy designed to combat the respiratory pathology of this condition must address the altered lung physiology and recurrent, complex, polymicrobial infections and biofilms that affect the CF pulmonary tract.In all cases, the 'gold standard' therapeutic agents were employed as control/comparator compounds against which the efficacy of cysteamine was compared.The data we present here provides a platform for cysteamine's continued investigation as a novel treatment for this poorly served orphan disease.

View Article: PubMed Central - PubMed

Affiliation: NovaBiotics Ltd, Cruickshank Building, Craibstone, Aberdeen, AB21 9TR, UK. cedric.charrier@gmail.com.

ABSTRACT

Background: There remains a critical need for more effective, safe, long-term treatments for cystic fibrosis (CF). Any successful therapeutic strategy designed to combat the respiratory pathology of this condition must address the altered lung physiology and recurrent, complex, polymicrobial infections and biofilms that affect the CF pulmonary tract. Cysteamine is a potential solution to these unmet medical needs and is described here for the first time as (Lynovex®) a single therapy with the potential to deliver mucoactive, antibiofilm and antibacterial properties; both in oral and inhaled delivery modes. Cysteamine is already established in clinical practice for an unrelated orphan condition, cystinosis, and is therefore being repurposed (in oral form) for cystic fibrosis from a platform of over twenty years of safety data and clinical experience.

Methods: The antibacterial and antibiofilm attributes of cysteamine were determined against type strain and clinical isolates of CF relevant pathogens using CLSI standard and adapted microbiological methods and a BioFlux microfluidic system. Assays were performed in standard nutrient media conditions, minimal media, to mimic the low metabolic activity of microbes/persister cells in the CF respiratory tract and in artificial sputum medium. In vivo antibacterial activity was determined in acute murine lung infection/cysteamine nebulisation models. The mucolytic potential of cysteamine was assessed against DNA and mucin in vitro by semi-quantitative macro-rheology. In all cases, the 'gold standard' therapeutic agents were employed as control/comparator compounds against which the efficacy of cysteamine was compared.

Results: Cysteamine demonstrated at least comparable mucolytic activity to currently available mucoactive agents. Cysteamine was rapidly bactericidal against both metabolically active and persister cells of Pseudomonas aeruginosa and also emerging CF pathogens; its activity was not sensitive to high ionic concentrations characteristic of the CF lung. Cysteamine prevented the formation of, and disrupted established P. aeruginosa biofilms. Cysteamine was synergistic with conventional CF antibiotics; reversing antibiotic resistance/insensitivity in CF bacterial pathogens.

Conclusions: The novel mucolytic-antimicrobial activity of cysteamine (Lynovex®) provides potential for a much needed new therapeutic strategy in cystic fibrosis. The data we present here provides a platform for cysteamine's continued investigation as a novel treatment for this poorly served orphan disease.

Show MeSH

Related in: MedlinePlus

Cysteamine disrupts production of normal human bronchial epithelial (NHBE) cell-derived mucus. Differentiated NHBE monolayers were exposed (basally) to 1 mg/ml cysteamine or control culture media for 7 days. Mucin production at the apical aspect was then assessed by Alcian blue staining macro- and microscopically (panels A & B) and the amount of free, non-mucin bound airway surface fluid quantified (panel C).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4260250&req=5

Fig5: Cysteamine disrupts production of normal human bronchial epithelial (NHBE) cell-derived mucus. Differentiated NHBE monolayers were exposed (basally) to 1 mg/ml cysteamine or control culture media for 7 days. Mucin production at the apical aspect was then assessed by Alcian blue staining macro- and microscopically (panels A & B) and the amount of free, non-mucin bound airway surface fluid quantified (panel C).

Mentions: Although the isolated porcine mucin and DNA rheology assays are very good indicators of cysteamine’s mucoactive potential, we went further to assess its properties against mucin as a component of respiratory epithelial cell-derived mucus; in a more complex and physiological relevant human system employing differentiated NHBE cells. Figure 5(A) demonstrates the presence of mucin within NHBE monolayer cultures as a function of the intensity of Alcian blue staining and that it is significantly reduced (less blue, only background staining versus specific matter) on monolayers exposed for 7 d to cysteamine versus those exposed to control media only. Figure 5(B) demonstrates the presence at a microscopic level of more Alcian blue-stained material within the cultures in control non-cysteamine treated cells versus cysteamine-treated cells. Finally, Figure 5(C) demonstrates that the disruption/reduction of mucin in the cysteamine treated cultures as indicated by less Alcian Blue staining also results in a greater volume of free apical surface liquid/fluid. This is to be expected if less intact mucin molecules are present to bind water and other airway surface fluid components in the apical mucus layer. The NHBE cell assay confirms the mucoactive properties of cysteamine in a physiologically relevant primary lung epithelial monolayer based system and also demonstrated that even relatively high levels of cysteamine were non-toxic to the NHBE cells.Figure 5


Cysteamine (Lynovex®), a novel mucoactive antimicrobial & antibiofilm agent for the treatment of cystic fibrosis.

Charrier C, Rodger C, Robertson J, Kowalczuk A, Shand N, Fraser-Pitt D, Mercer D, O'Neil D - Orphanet J Rare Dis (2014)

Cysteamine disrupts production of normal human bronchial epithelial (NHBE) cell-derived mucus. Differentiated NHBE monolayers were exposed (basally) to 1 mg/ml cysteamine or control culture media for 7 days. Mucin production at the apical aspect was then assessed by Alcian blue staining macro- and microscopically (panels A & B) and the amount of free, non-mucin bound airway surface fluid quantified (panel C).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4260250&req=5

Fig5: Cysteamine disrupts production of normal human bronchial epithelial (NHBE) cell-derived mucus. Differentiated NHBE monolayers were exposed (basally) to 1 mg/ml cysteamine or control culture media for 7 days. Mucin production at the apical aspect was then assessed by Alcian blue staining macro- and microscopically (panels A & B) and the amount of free, non-mucin bound airway surface fluid quantified (panel C).
Mentions: Although the isolated porcine mucin and DNA rheology assays are very good indicators of cysteamine’s mucoactive potential, we went further to assess its properties against mucin as a component of respiratory epithelial cell-derived mucus; in a more complex and physiological relevant human system employing differentiated NHBE cells. Figure 5(A) demonstrates the presence of mucin within NHBE monolayer cultures as a function of the intensity of Alcian blue staining and that it is significantly reduced (less blue, only background staining versus specific matter) on monolayers exposed for 7 d to cysteamine versus those exposed to control media only. Figure 5(B) demonstrates the presence at a microscopic level of more Alcian blue-stained material within the cultures in control non-cysteamine treated cells versus cysteamine-treated cells. Finally, Figure 5(C) demonstrates that the disruption/reduction of mucin in the cysteamine treated cultures as indicated by less Alcian Blue staining also results in a greater volume of free apical surface liquid/fluid. This is to be expected if less intact mucin molecules are present to bind water and other airway surface fluid components in the apical mucus layer. The NHBE cell assay confirms the mucoactive properties of cysteamine in a physiologically relevant primary lung epithelial monolayer based system and also demonstrated that even relatively high levels of cysteamine were non-toxic to the NHBE cells.Figure 5

Bottom Line: Any successful therapeutic strategy designed to combat the respiratory pathology of this condition must address the altered lung physiology and recurrent, complex, polymicrobial infections and biofilms that affect the CF pulmonary tract.In all cases, the 'gold standard' therapeutic agents were employed as control/comparator compounds against which the efficacy of cysteamine was compared.The data we present here provides a platform for cysteamine's continued investigation as a novel treatment for this poorly served orphan disease.

View Article: PubMed Central - PubMed

Affiliation: NovaBiotics Ltd, Cruickshank Building, Craibstone, Aberdeen, AB21 9TR, UK. cedric.charrier@gmail.com.

ABSTRACT

Background: There remains a critical need for more effective, safe, long-term treatments for cystic fibrosis (CF). Any successful therapeutic strategy designed to combat the respiratory pathology of this condition must address the altered lung physiology and recurrent, complex, polymicrobial infections and biofilms that affect the CF pulmonary tract. Cysteamine is a potential solution to these unmet medical needs and is described here for the first time as (Lynovex®) a single therapy with the potential to deliver mucoactive, antibiofilm and antibacterial properties; both in oral and inhaled delivery modes. Cysteamine is already established in clinical practice for an unrelated orphan condition, cystinosis, and is therefore being repurposed (in oral form) for cystic fibrosis from a platform of over twenty years of safety data and clinical experience.

Methods: The antibacterial and antibiofilm attributes of cysteamine were determined against type strain and clinical isolates of CF relevant pathogens using CLSI standard and adapted microbiological methods and a BioFlux microfluidic system. Assays were performed in standard nutrient media conditions, minimal media, to mimic the low metabolic activity of microbes/persister cells in the CF respiratory tract and in artificial sputum medium. In vivo antibacterial activity was determined in acute murine lung infection/cysteamine nebulisation models. The mucolytic potential of cysteamine was assessed against DNA and mucin in vitro by semi-quantitative macro-rheology. In all cases, the 'gold standard' therapeutic agents were employed as control/comparator compounds against which the efficacy of cysteamine was compared.

Results: Cysteamine demonstrated at least comparable mucolytic activity to currently available mucoactive agents. Cysteamine was rapidly bactericidal against both metabolically active and persister cells of Pseudomonas aeruginosa and also emerging CF pathogens; its activity was not sensitive to high ionic concentrations characteristic of the CF lung. Cysteamine prevented the formation of, and disrupted established P. aeruginosa biofilms. Cysteamine was synergistic with conventional CF antibiotics; reversing antibiotic resistance/insensitivity in CF bacterial pathogens.

Conclusions: The novel mucolytic-antimicrobial activity of cysteamine (Lynovex®) provides potential for a much needed new therapeutic strategy in cystic fibrosis. The data we present here provides a platform for cysteamine's continued investigation as a novel treatment for this poorly served orphan disease.

Show MeSH
Related in: MedlinePlus