Limits...
Novel metal allergy patch test using metal nanoballs.

Sugiyama T, Uo M, Wada T, Hongo T, Omagari D, Komiyama K, Sasaki H, Takahashi H, Kusama M, Mori Y - J Nanobiotechnology (2014)

Bottom Line: Consequently, in the new test system, reactions caused by high concentrations of metal salts were avoided.By exploiting the high specific surface area of Ni nanoballs, we obtained an effective dissolution of Ni ions that triggered Ni allergy in the absence of direct contact between the nanoballs and mouse skin.This novel patch system can be applied to other metals and alloys for diagnosing various types of metal-induced contact dermatitis.

View Article: PubMed Central - PubMed

Affiliation: Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan. tomoko_s@jichi.ac.jp.

ABSTRACT

Background: Patch tests are often used in the clinical diagnosis of metal allergies. In currently available patch tests, high concentrations of metal salt solutions are used. However, diagnosis accuracy can be influenced not only by acute skin reactions to high concentrations of metal salt, but also by skin reactions to other components present in the patch or to pH changes. In this study, we developed Ni nanoparticles (termed "nanoballs") for use in patch-test solutions.

Findings: Highly soluble, spherical Ni nanoballs were prepared using plasma electrolysis. The Ni released from the nanoballs permeated through a dialysis membrane, and the nanoball-containing solution's pH was maintained constant. Ni ions were released slowly at low concentrations in a time-dependent manner, which contrasted the rapid release observed in the case of a commercial patch test. Consequently, in the new test system, reactions caused by high concentrations of metal salts were avoided.

Conclusions: By exploiting the high specific surface area of Ni nanoballs, we obtained an effective dissolution of Ni ions that triggered Ni allergy in the absence of direct contact between the nanoballs and mouse skin. This novel patch system can be applied to other metals and alloys for diagnosing various types of metal-induced contact dermatitis.

No MeSH data available.


Related in: MedlinePlus

Temporal change in the relative Ni content of the skin and the chemical states of Ni. Time-dependent change in Ni distribution in mouse skin (cross-section) following 30-min to 24-h application of Ni-nanoball packs (a); the time dependence of the total fluorescence X-ray intensity of Ni Kα (over the entire specimen area shown in Figure 4a) of the Ni-nanoball pack and a commercial patch (b); and Ni K-edge XANES spectra of Ni nanoballs (c) and permeated Ni in mouse skin (released from a Ni-nanoball pack) (d).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4260209&req=5

Fig4: Temporal change in the relative Ni content of the skin and the chemical states of Ni. Time-dependent change in Ni distribution in mouse skin (cross-section) following 30-min to 24-h application of Ni-nanoball packs (a); the time dependence of the total fluorescence X-ray intensity of Ni Kα (over the entire specimen area shown in Figure 4a) of the Ni-nanoball pack and a commercial patch (b); and Ni K-edge XANES spectra of Ni nanoballs (c) and permeated Ni in mouse skin (released from a Ni-nanoball pack) (d).

Mentions: Figure 4 shows the temporal change in the relative Ni content of the skin. Figure 4a shows the images of Ni distribution in the skin cross-section, and Figure 4b shows the total fluorescence X-ray intensity of Ni Kα over the entire specimen area (shown in Figure 4a). When the Ni-nanoball pack was used, the Ni content in the skin increased linearly in a time-dependent manner until 24 h. Figure 4b shows the result obtained when we applied the commercial Ni-allergy patch to the skin by using the same method. The concentration of the Ni that permeated from the commercial patch increased drastically after application for only 30 min, and the permeated-Ni content was approximately three times higher than that after application for 24 h. This extremely high dose of Ni is likely to lower the accuracy of the commercial patch test as a result of the potential side reactions that it might cause. By contrast, the comparatively slow and time-dependent permeation of Ni from the Ni-nanoball pack is likely to be optimal for eliciting a Ni allergic reaction.Figure 4


Novel metal allergy patch test using metal nanoballs.

Sugiyama T, Uo M, Wada T, Hongo T, Omagari D, Komiyama K, Sasaki H, Takahashi H, Kusama M, Mori Y - J Nanobiotechnology (2014)

Temporal change in the relative Ni content of the skin and the chemical states of Ni. Time-dependent change in Ni distribution in mouse skin (cross-section) following 30-min to 24-h application of Ni-nanoball packs (a); the time dependence of the total fluorescence X-ray intensity of Ni Kα (over the entire specimen area shown in Figure 4a) of the Ni-nanoball pack and a commercial patch (b); and Ni K-edge XANES spectra of Ni nanoballs (c) and permeated Ni in mouse skin (released from a Ni-nanoball pack) (d).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4260209&req=5

Fig4: Temporal change in the relative Ni content of the skin and the chemical states of Ni. Time-dependent change in Ni distribution in mouse skin (cross-section) following 30-min to 24-h application of Ni-nanoball packs (a); the time dependence of the total fluorescence X-ray intensity of Ni Kα (over the entire specimen area shown in Figure 4a) of the Ni-nanoball pack and a commercial patch (b); and Ni K-edge XANES spectra of Ni nanoballs (c) and permeated Ni in mouse skin (released from a Ni-nanoball pack) (d).
Mentions: Figure 4 shows the temporal change in the relative Ni content of the skin. Figure 4a shows the images of Ni distribution in the skin cross-section, and Figure 4b shows the total fluorescence X-ray intensity of Ni Kα over the entire specimen area (shown in Figure 4a). When the Ni-nanoball pack was used, the Ni content in the skin increased linearly in a time-dependent manner until 24 h. Figure 4b shows the result obtained when we applied the commercial Ni-allergy patch to the skin by using the same method. The concentration of the Ni that permeated from the commercial patch increased drastically after application for only 30 min, and the permeated-Ni content was approximately three times higher than that after application for 24 h. This extremely high dose of Ni is likely to lower the accuracy of the commercial patch test as a result of the potential side reactions that it might cause. By contrast, the comparatively slow and time-dependent permeation of Ni from the Ni-nanoball pack is likely to be optimal for eliciting a Ni allergic reaction.Figure 4

Bottom Line: Consequently, in the new test system, reactions caused by high concentrations of metal salts were avoided.By exploiting the high specific surface area of Ni nanoballs, we obtained an effective dissolution of Ni ions that triggered Ni allergy in the absence of direct contact between the nanoballs and mouse skin.This novel patch system can be applied to other metals and alloys for diagnosing various types of metal-induced contact dermatitis.

View Article: PubMed Central - PubMed

Affiliation: Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan. tomoko_s@jichi.ac.jp.

ABSTRACT

Background: Patch tests are often used in the clinical diagnosis of metal allergies. In currently available patch tests, high concentrations of metal salt solutions are used. However, diagnosis accuracy can be influenced not only by acute skin reactions to high concentrations of metal salt, but also by skin reactions to other components present in the patch or to pH changes. In this study, we developed Ni nanoparticles (termed "nanoballs") for use in patch-test solutions.

Findings: Highly soluble, spherical Ni nanoballs were prepared using plasma electrolysis. The Ni released from the nanoballs permeated through a dialysis membrane, and the nanoball-containing solution's pH was maintained constant. Ni ions were released slowly at low concentrations in a time-dependent manner, which contrasted the rapid release observed in the case of a commercial patch test. Consequently, in the new test system, reactions caused by high concentrations of metal salts were avoided.

Conclusions: By exploiting the high specific surface area of Ni nanoballs, we obtained an effective dissolution of Ni ions that triggered Ni allergy in the absence of direct contact between the nanoballs and mouse skin. This novel patch system can be applied to other metals and alloys for diagnosing various types of metal-induced contact dermatitis.

No MeSH data available.


Related in: MedlinePlus