Limits...
Susceptibility to experimental infection of the invertebrate locusts (Schistocerca gregaria) with the apicomplexan parasite Neospora caninum.

Alkurashi MM, May ST, Kong K, Bacardit J, Haig D, Elsheikha HM - PeerJ (2014)

Bottom Line: Also, N. caninum showed neuropathogenic affinity, induced histological changes in the brain and was able to replicate in the brain of infected locusts.Locusts may facilitate preclinical testing of interventional strategies to inhibit the growth of N. caninum tachyzoites.Further studies on how N. caninum brings about changes in locust brain tissue are now warranted.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Veterinary Medicine and Science, University of Nottingham , Sutton Bonington Campus, Leicestershire , UK ; Animal Production Department, College of Food and Agricultural Sciences, King Saud University , Riyadh , Saudi Arabia.

ABSTRACT
Neuropathogenesis is a feature of Neospora caninum infection. In order to explore this in the absence of acquired host immunity to the parasite, we have tested infection in locusts (Schistocerca gregaria). We show for the first time that locusts are permissive to intra-hemocoel infection with N. caninum tachyzoites. This was characterized by alteration in body weight, fecal output, hemoparasitemia, and sickness-related behavior. Infected locusts exhibited progressive signs of sickness leading to mortality. Also, N. caninum showed neuropathogenic affinity, induced histological changes in the brain and was able to replicate in the brain of infected locusts. Fatty acid (FA) profiling analysis of the brains by gas chromatography and multi-variate prediction models discriminated with high accuracy (98%) between the FA profiles of the infected and control locusts. DNA microarray gene expression profiling distinguished infected from control S. gregaria brain tissues on the basis of distinct differentially-expressed genes. These data indicate that locusts are permissible to infection with N. caninum and that the parasite retains its tropism for neural tissues in the invertebrate host. Locusts may facilitate preclinical testing of interventional strategies to inhibit the growth of N. caninum tachyzoites. Further studies on how N. caninum brings about changes in locust brain tissue are now warranted.

No MeSH data available.


Related in: MedlinePlus

Hierarchical clustering of significantly expressed genes of three infected vs. three control locusts.The heat map shows two relatively distinct clusters of highly differentially expressed transcripts obtained from pairwise comparison between infected vs. control locust groups. Each row represents each sample tested and each column represents a single probeset (gene). On the hierarchical tree at the left side of the diagram, the upper half (red) indicates the control samples and the lower half (orange) indicates the infected samples. Relative gene expression is color represented: red is higher-level expression relative to the sample mean, blue is relatively lower-level expression, grey is no-change. The 11 probesets/genes in the upper right quadrant of the cluster map are genes that decreased upon infection relative to the control samples (shown in the lower right quadrant). The 6 probes/genes in the left upper quadrant were genes that were increased in control samples relative to infected samples (in the lower left quadrant).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4260130&req=5

fig-10: Hierarchical clustering of significantly expressed genes of three infected vs. three control locusts.The heat map shows two relatively distinct clusters of highly differentially expressed transcripts obtained from pairwise comparison between infected vs. control locust groups. Each row represents each sample tested and each column represents a single probeset (gene). On the hierarchical tree at the left side of the diagram, the upper half (red) indicates the control samples and the lower half (orange) indicates the infected samples. Relative gene expression is color represented: red is higher-level expression relative to the sample mean, blue is relatively lower-level expression, grey is no-change. The 11 probesets/genes in the upper right quadrant of the cluster map are genes that decreased upon infection relative to the control samples (shown in the lower right quadrant). The 6 probes/genes in the left upper quadrant were genes that were increased in control samples relative to infected samples (in the lower left quadrant).

Mentions: DNA microarray expression profiling demonstrated significant differences in gene expression between infected and control locusts. From the 17 statistically-significant probes that represented multiple genes, a hierarchical clustering heat map revealed two distinctive patterns that closely correlated with the two study groups (Fig. 10).


Susceptibility to experimental infection of the invertebrate locusts (Schistocerca gregaria) with the apicomplexan parasite Neospora caninum.

Alkurashi MM, May ST, Kong K, Bacardit J, Haig D, Elsheikha HM - PeerJ (2014)

Hierarchical clustering of significantly expressed genes of three infected vs. three control locusts.The heat map shows two relatively distinct clusters of highly differentially expressed transcripts obtained from pairwise comparison between infected vs. control locust groups. Each row represents each sample tested and each column represents a single probeset (gene). On the hierarchical tree at the left side of the diagram, the upper half (red) indicates the control samples and the lower half (orange) indicates the infected samples. Relative gene expression is color represented: red is higher-level expression relative to the sample mean, blue is relatively lower-level expression, grey is no-change. The 11 probesets/genes in the upper right quadrant of the cluster map are genes that decreased upon infection relative to the control samples (shown in the lower right quadrant). The 6 probes/genes in the left upper quadrant were genes that were increased in control samples relative to infected samples (in the lower left quadrant).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4260130&req=5

fig-10: Hierarchical clustering of significantly expressed genes of three infected vs. three control locusts.The heat map shows two relatively distinct clusters of highly differentially expressed transcripts obtained from pairwise comparison between infected vs. control locust groups. Each row represents each sample tested and each column represents a single probeset (gene). On the hierarchical tree at the left side of the diagram, the upper half (red) indicates the control samples and the lower half (orange) indicates the infected samples. Relative gene expression is color represented: red is higher-level expression relative to the sample mean, blue is relatively lower-level expression, grey is no-change. The 11 probesets/genes in the upper right quadrant of the cluster map are genes that decreased upon infection relative to the control samples (shown in the lower right quadrant). The 6 probes/genes in the left upper quadrant were genes that were increased in control samples relative to infected samples (in the lower left quadrant).
Mentions: DNA microarray expression profiling demonstrated significant differences in gene expression between infected and control locusts. From the 17 statistically-significant probes that represented multiple genes, a hierarchical clustering heat map revealed two distinctive patterns that closely correlated with the two study groups (Fig. 10).

Bottom Line: Also, N. caninum showed neuropathogenic affinity, induced histological changes in the brain and was able to replicate in the brain of infected locusts.Locusts may facilitate preclinical testing of interventional strategies to inhibit the growth of N. caninum tachyzoites.Further studies on how N. caninum brings about changes in locust brain tissue are now warranted.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Veterinary Medicine and Science, University of Nottingham , Sutton Bonington Campus, Leicestershire , UK ; Animal Production Department, College of Food and Agricultural Sciences, King Saud University , Riyadh , Saudi Arabia.

ABSTRACT
Neuropathogenesis is a feature of Neospora caninum infection. In order to explore this in the absence of acquired host immunity to the parasite, we have tested infection in locusts (Schistocerca gregaria). We show for the first time that locusts are permissive to intra-hemocoel infection with N. caninum tachyzoites. This was characterized by alteration in body weight, fecal output, hemoparasitemia, and sickness-related behavior. Infected locusts exhibited progressive signs of sickness leading to mortality. Also, N. caninum showed neuropathogenic affinity, induced histological changes in the brain and was able to replicate in the brain of infected locusts. Fatty acid (FA) profiling analysis of the brains by gas chromatography and multi-variate prediction models discriminated with high accuracy (98%) between the FA profiles of the infected and control locusts. DNA microarray gene expression profiling distinguished infected from control S. gregaria brain tissues on the basis of distinct differentially-expressed genes. These data indicate that locusts are permissible to infection with N. caninum and that the parasite retains its tropism for neural tissues in the invertebrate host. Locusts may facilitate preclinical testing of interventional strategies to inhibit the growth of N. caninum tachyzoites. Further studies on how N. caninum brings about changes in locust brain tissue are now warranted.

No MeSH data available.


Related in: MedlinePlus