Limits...
Susceptibility to experimental infection of the invertebrate locusts (Schistocerca gregaria) with the apicomplexan parasite Neospora caninum.

Alkurashi MM, May ST, Kong K, Bacardit J, Haig D, Elsheikha HM - PeerJ (2014)

Bottom Line: Also, N. caninum showed neuropathogenic affinity, induced histological changes in the brain and was able to replicate in the brain of infected locusts.Locusts may facilitate preclinical testing of interventional strategies to inhibit the growth of N. caninum tachyzoites.Further studies on how N. caninum brings about changes in locust brain tissue are now warranted.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Veterinary Medicine and Science, University of Nottingham , Sutton Bonington Campus, Leicestershire , UK ; Animal Production Department, College of Food and Agricultural Sciences, King Saud University , Riyadh , Saudi Arabia.

ABSTRACT
Neuropathogenesis is a feature of Neospora caninum infection. In order to explore this in the absence of acquired host immunity to the parasite, we have tested infection in locusts (Schistocerca gregaria). We show for the first time that locusts are permissive to intra-hemocoel infection with N. caninum tachyzoites. This was characterized by alteration in body weight, fecal output, hemoparasitemia, and sickness-related behavior. Infected locusts exhibited progressive signs of sickness leading to mortality. Also, N. caninum showed neuropathogenic affinity, induced histological changes in the brain and was able to replicate in the brain of infected locusts. Fatty acid (FA) profiling analysis of the brains by gas chromatography and multi-variate prediction models discriminated with high accuracy (98%) between the FA profiles of the infected and control locusts. DNA microarray gene expression profiling distinguished infected from control S. gregaria brain tissues on the basis of distinct differentially-expressed genes. These data indicate that locusts are permissible to infection with N. caninum and that the parasite retains its tropism for neural tissues in the invertebrate host. Locusts may facilitate preclinical testing of interventional strategies to inhibit the growth of N. caninum tachyzoites. Further studies on how N. caninum brings about changes in locust brain tissue are now warranted.

No MeSH data available.


Related in: MedlinePlus

Heat map of differentially expressed lipids in locust brains.Unsupervised two-dimensional hierarchical clustering of the 7 fatty acids that showed fold change differences between infected locust groups (n = 5 locusts) and their adjacent control daily for 5 days post infection with Neospora caninum. The heat map of differentially expressed lipids based on clustering is shown in the figure. Each column represents a lipid species and each row represents a locust group. Red colour indicates lipids that were upregulated and yellow color indicates lipids that were downregulated. Orange indicates lipids whose level is unchanged in infected locust’s brain as compared to normal. A significant discriminative power between the infected and control samples of the locust’s brain was evident. Samples are identified by a three-part code: “F/C (infected/controls)”. “Time point”. “Replicate number”. Fatty acids are reordered after applying a hierarchical clustering to their profiles. Hierarchical clustering of the rows and columns highlights groups of significantly correlated infection and lipids.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4260130&req=5

fig-8: Heat map of differentially expressed lipids in locust brains.Unsupervised two-dimensional hierarchical clustering of the 7 fatty acids that showed fold change differences between infected locust groups (n = 5 locusts) and their adjacent control daily for 5 days post infection with Neospora caninum. The heat map of differentially expressed lipids based on clustering is shown in the figure. Each column represents a lipid species and each row represents a locust group. Red colour indicates lipids that were upregulated and yellow color indicates lipids that were downregulated. Orange indicates lipids whose level is unchanged in infected locust’s brain as compared to normal. A significant discriminative power between the infected and control samples of the locust’s brain was evident. Samples are identified by a three-part code: “F/C (infected/controls)”. “Time point”. “Replicate number”. Fatty acids are reordered after applying a hierarchical clustering to their profiles. Hierarchical clustering of the rows and columns highlights groups of significantly correlated infection and lipids.

Mentions: In an effort to understand the mechanisms underlying the complex relationships between the host locust and parasite infection, we compared the fatty acid profile of brain from infected locusts to that for their control counterparts. Among the 37 fatty acids analyzed in this study, results were consistently obtained from all tested samples for only seven FAs and included: saturated fatty acids: C14:0, C16:0, C18:0; monounsaturated fatty acids: C16:1; polysaturated fatty acid-Omega (n)-3: C18:3n3. Omega (n)-6: C18:2n6, C18:1n9C. Figure 8 shows a heatmap that should be visualizing the relationships of these fatty acids to the 50 samples (25 infected, 25 controls). The heatmap suggests that no individual fatty acid is strongly associated to any of the two groups. Nonetheless, our analysis using the BioHEL machine learning algorithm reveals that we can create multi-variate prediction models that can assign samples to treatments with very high accuracy. The results of the data analysis are summarised in Table S1. When the prediction models use the seven FAs we can correctly predict 98% (all but one) of the samples. To check if an even more reduced panel of fatty acids presents high discriminative power we tested all combinations of two, three and four fatty acids. The best groups of four [Palmitic acid methyl ester (C16:0), Palmitoleic acid methyl ester (C16:1), Linoleic acid methyl ester (C18:2n6c), and Linolenic acid methyl ester (C18:3n3)] and three [C16:1, C18:2n6c and C18:3n3] FAs managed to still give an accuracy of 98%. The best group of two fatty acids (C16:1 C18:2n6c) reduced its accuracy to 94% (mis-classifying three samples).


Susceptibility to experimental infection of the invertebrate locusts (Schistocerca gregaria) with the apicomplexan parasite Neospora caninum.

Alkurashi MM, May ST, Kong K, Bacardit J, Haig D, Elsheikha HM - PeerJ (2014)

Heat map of differentially expressed lipids in locust brains.Unsupervised two-dimensional hierarchical clustering of the 7 fatty acids that showed fold change differences between infected locust groups (n = 5 locusts) and their adjacent control daily for 5 days post infection with Neospora caninum. The heat map of differentially expressed lipids based on clustering is shown in the figure. Each column represents a lipid species and each row represents a locust group. Red colour indicates lipids that were upregulated and yellow color indicates lipids that were downregulated. Orange indicates lipids whose level is unchanged in infected locust’s brain as compared to normal. A significant discriminative power between the infected and control samples of the locust’s brain was evident. Samples are identified by a three-part code: “F/C (infected/controls)”. “Time point”. “Replicate number”. Fatty acids are reordered after applying a hierarchical clustering to their profiles. Hierarchical clustering of the rows and columns highlights groups of significantly correlated infection and lipids.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4260130&req=5

fig-8: Heat map of differentially expressed lipids in locust brains.Unsupervised two-dimensional hierarchical clustering of the 7 fatty acids that showed fold change differences between infected locust groups (n = 5 locusts) and their adjacent control daily for 5 days post infection with Neospora caninum. The heat map of differentially expressed lipids based on clustering is shown in the figure. Each column represents a lipid species and each row represents a locust group. Red colour indicates lipids that were upregulated and yellow color indicates lipids that were downregulated. Orange indicates lipids whose level is unchanged in infected locust’s brain as compared to normal. A significant discriminative power between the infected and control samples of the locust’s brain was evident. Samples are identified by a three-part code: “F/C (infected/controls)”. “Time point”. “Replicate number”. Fatty acids are reordered after applying a hierarchical clustering to their profiles. Hierarchical clustering of the rows and columns highlights groups of significantly correlated infection and lipids.
Mentions: In an effort to understand the mechanisms underlying the complex relationships between the host locust and parasite infection, we compared the fatty acid profile of brain from infected locusts to that for their control counterparts. Among the 37 fatty acids analyzed in this study, results were consistently obtained from all tested samples for only seven FAs and included: saturated fatty acids: C14:0, C16:0, C18:0; monounsaturated fatty acids: C16:1; polysaturated fatty acid-Omega (n)-3: C18:3n3. Omega (n)-6: C18:2n6, C18:1n9C. Figure 8 shows a heatmap that should be visualizing the relationships of these fatty acids to the 50 samples (25 infected, 25 controls). The heatmap suggests that no individual fatty acid is strongly associated to any of the two groups. Nonetheless, our analysis using the BioHEL machine learning algorithm reveals that we can create multi-variate prediction models that can assign samples to treatments with very high accuracy. The results of the data analysis are summarised in Table S1. When the prediction models use the seven FAs we can correctly predict 98% (all but one) of the samples. To check if an even more reduced panel of fatty acids presents high discriminative power we tested all combinations of two, three and four fatty acids. The best groups of four [Palmitic acid methyl ester (C16:0), Palmitoleic acid methyl ester (C16:1), Linoleic acid methyl ester (C18:2n6c), and Linolenic acid methyl ester (C18:3n3)] and three [C16:1, C18:2n6c and C18:3n3] FAs managed to still give an accuracy of 98%. The best group of two fatty acids (C16:1 C18:2n6c) reduced its accuracy to 94% (mis-classifying three samples).

Bottom Line: Also, N. caninum showed neuropathogenic affinity, induced histological changes in the brain and was able to replicate in the brain of infected locusts.Locusts may facilitate preclinical testing of interventional strategies to inhibit the growth of N. caninum tachyzoites.Further studies on how N. caninum brings about changes in locust brain tissue are now warranted.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Veterinary Medicine and Science, University of Nottingham , Sutton Bonington Campus, Leicestershire , UK ; Animal Production Department, College of Food and Agricultural Sciences, King Saud University , Riyadh , Saudi Arabia.

ABSTRACT
Neuropathogenesis is a feature of Neospora caninum infection. In order to explore this in the absence of acquired host immunity to the parasite, we have tested infection in locusts (Schistocerca gregaria). We show for the first time that locusts are permissive to intra-hemocoel infection with N. caninum tachyzoites. This was characterized by alteration in body weight, fecal output, hemoparasitemia, and sickness-related behavior. Infected locusts exhibited progressive signs of sickness leading to mortality. Also, N. caninum showed neuropathogenic affinity, induced histological changes in the brain and was able to replicate in the brain of infected locusts. Fatty acid (FA) profiling analysis of the brains by gas chromatography and multi-variate prediction models discriminated with high accuracy (98%) between the FA profiles of the infected and control locusts. DNA microarray gene expression profiling distinguished infected from control S. gregaria brain tissues on the basis of distinct differentially-expressed genes. These data indicate that locusts are permissible to infection with N. caninum and that the parasite retains its tropism for neural tissues in the invertebrate host. Locusts may facilitate preclinical testing of interventional strategies to inhibit the growth of N. caninum tachyzoites. Further studies on how N. caninum brings about changes in locust brain tissue are now warranted.

No MeSH data available.


Related in: MedlinePlus