Limits...
Susceptibility to experimental infection of the invertebrate locusts (Schistocerca gregaria) with the apicomplexan parasite Neospora caninum.

Alkurashi MM, May ST, Kong K, Bacardit J, Haig D, Elsheikha HM - PeerJ (2014)

Bottom Line: Also, N. caninum showed neuropathogenic affinity, induced histological changes in the brain and was able to replicate in the brain of infected locusts.Locusts may facilitate preclinical testing of interventional strategies to inhibit the growth of N. caninum tachyzoites.Further studies on how N. caninum brings about changes in locust brain tissue are now warranted.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Veterinary Medicine and Science, University of Nottingham , Sutton Bonington Campus, Leicestershire , UK ; Animal Production Department, College of Food and Agricultural Sciences, King Saud University , Riyadh , Saudi Arabia.

ABSTRACT
Neuropathogenesis is a feature of Neospora caninum infection. In order to explore this in the absence of acquired host immunity to the parasite, we have tested infection in locusts (Schistocerca gregaria). We show for the first time that locusts are permissive to intra-hemocoel infection with N. caninum tachyzoites. This was characterized by alteration in body weight, fecal output, hemoparasitemia, and sickness-related behavior. Infected locusts exhibited progressive signs of sickness leading to mortality. Also, N. caninum showed neuropathogenic affinity, induced histological changes in the brain and was able to replicate in the brain of infected locusts. Fatty acid (FA) profiling analysis of the brains by gas chromatography and multi-variate prediction models discriminated with high accuracy (98%) between the FA profiles of the infected and control locusts. DNA microarray gene expression profiling distinguished infected from control S. gregaria brain tissues on the basis of distinct differentially-expressed genes. These data indicate that locusts are permissible to infection with N. caninum and that the parasite retains its tropism for neural tissues in the invertebrate host. Locusts may facilitate preclinical testing of interventional strategies to inhibit the growth of N. caninum tachyzoites. Further studies on how N. caninum brings about changes in locust brain tissue are now warranted.

No MeSH data available.


Related in: MedlinePlus

PCR amplification of the Neospora caninum-specific Nc5 region (Np21/Np6).Amplification of DNA extracts from brains of locusts experimentally infected with N. caninum showed the presence of genetic evidence of N. caninum in the brain of locusts from day 1 (d1) to day 5 (d5) PI. M: 100-bp molecular size marker; Lane 1: positive control represent DNA extracted from ∼3 × 106 tachyzoites; lanes d1 to d5: N. caninum in brain d1 to d5.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4260130&req=5

fig-5: PCR amplification of the Neospora caninum-specific Nc5 region (Np21/Np6).Amplification of DNA extracts from brains of locusts experimentally infected with N. caninum showed the presence of genetic evidence of N. caninum in the brain of locusts from day 1 (d1) to day 5 (d5) PI. M: 100-bp molecular size marker; Lane 1: positive control represent DNA extracted from ∼3 × 106 tachyzoites; lanes d1 to d5: N. caninum in brain d1 to d5.

Mentions: In all brain tissue of infected locusts, the PCR products were successfully amplified to the expected 337-bp parasite-specific fragment, which was found to correspond to the targeted N. caninum sequence within the Nc5 gene as confirmed by sequencing analysis. Positive PCR products from locusts’ brains were obtained from day one to day five PI (Fig. 5) and were found to slightly increase as infection progressed over time. Even though end-point PCR can detect and quantify specific DNA sequences it is commonly used as a semi-quantitative method, and thus results should be confirmed by reverse transcription-quantitative PCR (RT-qPCR). No genetic evidence for the presence of tachyzoites was detected in the brain of control locusts for up to 14 day PI. PCR was also used to determine parasite distribution to other body sites (fat body and muscle). The parasite DNA was not detected in any of the examined non-brain tissues. Likewise, there was no evidence for the presence of the parasite in feces.


Susceptibility to experimental infection of the invertebrate locusts (Schistocerca gregaria) with the apicomplexan parasite Neospora caninum.

Alkurashi MM, May ST, Kong K, Bacardit J, Haig D, Elsheikha HM - PeerJ (2014)

PCR amplification of the Neospora caninum-specific Nc5 region (Np21/Np6).Amplification of DNA extracts from brains of locusts experimentally infected with N. caninum showed the presence of genetic evidence of N. caninum in the brain of locusts from day 1 (d1) to day 5 (d5) PI. M: 100-bp molecular size marker; Lane 1: positive control represent DNA extracted from ∼3 × 106 tachyzoites; lanes d1 to d5: N. caninum in brain d1 to d5.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4260130&req=5

fig-5: PCR amplification of the Neospora caninum-specific Nc5 region (Np21/Np6).Amplification of DNA extracts from brains of locusts experimentally infected with N. caninum showed the presence of genetic evidence of N. caninum in the brain of locusts from day 1 (d1) to day 5 (d5) PI. M: 100-bp molecular size marker; Lane 1: positive control represent DNA extracted from ∼3 × 106 tachyzoites; lanes d1 to d5: N. caninum in brain d1 to d5.
Mentions: In all brain tissue of infected locusts, the PCR products were successfully amplified to the expected 337-bp parasite-specific fragment, which was found to correspond to the targeted N. caninum sequence within the Nc5 gene as confirmed by sequencing analysis. Positive PCR products from locusts’ brains were obtained from day one to day five PI (Fig. 5) and were found to slightly increase as infection progressed over time. Even though end-point PCR can detect and quantify specific DNA sequences it is commonly used as a semi-quantitative method, and thus results should be confirmed by reverse transcription-quantitative PCR (RT-qPCR). No genetic evidence for the presence of tachyzoites was detected in the brain of control locusts for up to 14 day PI. PCR was also used to determine parasite distribution to other body sites (fat body and muscle). The parasite DNA was not detected in any of the examined non-brain tissues. Likewise, there was no evidence for the presence of the parasite in feces.

Bottom Line: Also, N. caninum showed neuropathogenic affinity, induced histological changes in the brain and was able to replicate in the brain of infected locusts.Locusts may facilitate preclinical testing of interventional strategies to inhibit the growth of N. caninum tachyzoites.Further studies on how N. caninum brings about changes in locust brain tissue are now warranted.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Veterinary Medicine and Science, University of Nottingham , Sutton Bonington Campus, Leicestershire , UK ; Animal Production Department, College of Food and Agricultural Sciences, King Saud University , Riyadh , Saudi Arabia.

ABSTRACT
Neuropathogenesis is a feature of Neospora caninum infection. In order to explore this in the absence of acquired host immunity to the parasite, we have tested infection in locusts (Schistocerca gregaria). We show for the first time that locusts are permissive to intra-hemocoel infection with N. caninum tachyzoites. This was characterized by alteration in body weight, fecal output, hemoparasitemia, and sickness-related behavior. Infected locusts exhibited progressive signs of sickness leading to mortality. Also, N. caninum showed neuropathogenic affinity, induced histological changes in the brain and was able to replicate in the brain of infected locusts. Fatty acid (FA) profiling analysis of the brains by gas chromatography and multi-variate prediction models discriminated with high accuracy (98%) between the FA profiles of the infected and control locusts. DNA microarray gene expression profiling distinguished infected from control S. gregaria brain tissues on the basis of distinct differentially-expressed genes. These data indicate that locusts are permissible to infection with N. caninum and that the parasite retains its tropism for neural tissues in the invertebrate host. Locusts may facilitate preclinical testing of interventional strategies to inhibit the growth of N. caninum tachyzoites. Further studies on how N. caninum brings about changes in locust brain tissue are now warranted.

No MeSH data available.


Related in: MedlinePlus