Limits...
Genetic mapping of legume orthologs reveals high conservation of synteny between lentil species and the sequenced genomes of Medicago and chickpea.

Gujaria-Verma N, Vail SL, Carrasquilla-Garcia N, Penmetsa RV, Cook DR, Farmer AD, Vandenberg A, Bett KE - Front Plant Sci (2014)

Bottom Line: A set of 1107 TOG-based amplicons were identified in L. ervoides and a subset thereof used to design SNP markers for mapping.A map of L. ervoides consisting of 377 SNP markers spread across seven linkage groups was developed using a GoldenGate genotyping array and single SNP marker assays.The identification of chromosome-level differences among Lens spp. will aid in the understanding of introgression of genes from L. ervoides into cultivated L. culinaris, furthering genetic research and breeding applications in lentil.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Sciences, University of Saskatchewan Saskatoon, SK, Canada.

ABSTRACT
Lentil (Lens culinaris Medik.) is a global food crop with increasing importance for food security in south Asia and other regions. Lens ervoides, a wild relative of cultivated lentil, is an important source of agronomic trait variation. Lens is a member of the galegoid clade of the Papilionoideae family, which includes other important dietary legumes such as chickpea (Cicer arietinum) and pea (Pisum sativum), and the sequenced model legume Medicago truncatula. Understanding the genetic structure of Lens spp. in relation to more fully sequenced legumes would allow leveraging of genomic resources. A set of 1107 TOG-based amplicons were identified in L. ervoides and a subset thereof used to design SNP markers for mapping. A map of L. ervoides consisting of 377 SNP markers spread across seven linkage groups was developed using a GoldenGate genotyping array and single SNP marker assays. Comparison with maps of M. truncatula and L. culinaris documented considerable shared synteny and led to the identification of a few major translocations and a major inversion that distinguish Lens from M. truncatula, as well as a translocation that distinguishes L. culinaris from L. ervoides. The identification of chromosome-level differences among Lens spp. will aid in the understanding of introgression of genes from L. ervoides into cultivated L. culinaris, furthering genetic research and breeding applications in lentil.

No MeSH data available.


Related in: MedlinePlus

First generation genetic map of wild lentil species L. ervoides. The genetic map based on F2 mapping population LR-66 (L01-827a × IG 72815) is comprised of 377 gene based markers including 359 lentil TOGs and 18 other SNP, KASP (LcC) markers. The seven linkage groups likely represent the seven chromosomes of wild lentil and are designated as LeLG1-LeLG7. Map distances (cM) are presented on the left side of the bars and corresponding markers are listed on the right side of the bars. Marker classes are color coded as LeTOGs (black) and LcC (red).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4256995&req=5

Figure 2: First generation genetic map of wild lentil species L. ervoides. The genetic map based on F2 mapping population LR-66 (L01-827a × IG 72815) is comprised of 377 gene based markers including 359 lentil TOGs and 18 other SNP, KASP (LcC) markers. The seven linkage groups likely represent the seven chromosomes of wild lentil and are designated as LeLG1-LeLG7. Map distances (cM) are presented on the left side of the bars and corresponding markers are listed on the right side of the bars. Marker classes are color coded as LeTOGs (black) and LcC (red).

Mentions: A total of 377 markers mapped into seven linkage groups (LeLG1-LeLG7; Figure 2), which likely represent the seven chromosomes of Le. This genetic map spans 973.7 cM with an average inter-marker distance of 2.6 cM. Similar numbers of marker loci mapped on to each linkage group, varying from 50 (LeLG1 and LeLG7) to 62 (LeLG4). The linkage groups were numbered to best match those in the Lc map of Sharpe et al. (2013).


Genetic mapping of legume orthologs reveals high conservation of synteny between lentil species and the sequenced genomes of Medicago and chickpea.

Gujaria-Verma N, Vail SL, Carrasquilla-Garcia N, Penmetsa RV, Cook DR, Farmer AD, Vandenberg A, Bett KE - Front Plant Sci (2014)

First generation genetic map of wild lentil species L. ervoides. The genetic map based on F2 mapping population LR-66 (L01-827a × IG 72815) is comprised of 377 gene based markers including 359 lentil TOGs and 18 other SNP, KASP (LcC) markers. The seven linkage groups likely represent the seven chromosomes of wild lentil and are designated as LeLG1-LeLG7. Map distances (cM) are presented on the left side of the bars and corresponding markers are listed on the right side of the bars. Marker classes are color coded as LeTOGs (black) and LcC (red).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4256995&req=5

Figure 2: First generation genetic map of wild lentil species L. ervoides. The genetic map based on F2 mapping population LR-66 (L01-827a × IG 72815) is comprised of 377 gene based markers including 359 lentil TOGs and 18 other SNP, KASP (LcC) markers. The seven linkage groups likely represent the seven chromosomes of wild lentil and are designated as LeLG1-LeLG7. Map distances (cM) are presented on the left side of the bars and corresponding markers are listed on the right side of the bars. Marker classes are color coded as LeTOGs (black) and LcC (red).
Mentions: A total of 377 markers mapped into seven linkage groups (LeLG1-LeLG7; Figure 2), which likely represent the seven chromosomes of Le. This genetic map spans 973.7 cM with an average inter-marker distance of 2.6 cM. Similar numbers of marker loci mapped on to each linkage group, varying from 50 (LeLG1 and LeLG7) to 62 (LeLG4). The linkage groups were numbered to best match those in the Lc map of Sharpe et al. (2013).

Bottom Line: A set of 1107 TOG-based amplicons were identified in L. ervoides and a subset thereof used to design SNP markers for mapping.A map of L. ervoides consisting of 377 SNP markers spread across seven linkage groups was developed using a GoldenGate genotyping array and single SNP marker assays.The identification of chromosome-level differences among Lens spp. will aid in the understanding of introgression of genes from L. ervoides into cultivated L. culinaris, furthering genetic research and breeding applications in lentil.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Sciences, University of Saskatchewan Saskatoon, SK, Canada.

ABSTRACT
Lentil (Lens culinaris Medik.) is a global food crop with increasing importance for food security in south Asia and other regions. Lens ervoides, a wild relative of cultivated lentil, is an important source of agronomic trait variation. Lens is a member of the galegoid clade of the Papilionoideae family, which includes other important dietary legumes such as chickpea (Cicer arietinum) and pea (Pisum sativum), and the sequenced model legume Medicago truncatula. Understanding the genetic structure of Lens spp. in relation to more fully sequenced legumes would allow leveraging of genomic resources. A set of 1107 TOG-based amplicons were identified in L. ervoides and a subset thereof used to design SNP markers for mapping. A map of L. ervoides consisting of 377 SNP markers spread across seven linkage groups was developed using a GoldenGate genotyping array and single SNP marker assays. Comparison with maps of M. truncatula and L. culinaris documented considerable shared synteny and led to the identification of a few major translocations and a major inversion that distinguish Lens from M. truncatula, as well as a translocation that distinguishes L. culinaris from L. ervoides. The identification of chromosome-level differences among Lens spp. will aid in the understanding of introgression of genes from L. ervoides into cultivated L. culinaris, furthering genetic research and breeding applications in lentil.

No MeSH data available.


Related in: MedlinePlus