Limits...
Comparative assessment of the effects of climate change on heat- and cold-related mortality in the United Kingdom and Australia.

Vardoulakis S, Dear K, Hajat S, Heaviside C, Eggen B, McMichael AJ - Environ. Health Perspect. (2014)

Bottom Line: High and low ambient temperatures are associated with increased mortality in temperate and subtropical climates.Although cold-related mortality is projected to decrease due to climate change to approximately 42 and 19 deaths per 100,000 population per year in UK regions and Australian cities, heat-related mortality is projected to increase to around 9 and 8 deaths per 100,000 population per year, respectively, by the 2080s, assuming no changes in susceptibility and structure of the population.Projected changes in climate are likely to lead to an increase in heat-related mortality in the United Kingdom and Australia over this century, but also to a decrease in cold-related deaths.

View Article: PubMed Central - PubMed

Affiliation: Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, United Kingdom.

ABSTRACT

Background: High and low ambient temperatures are associated with increased mortality in temperate and subtropical climates. Temperature-related mortality patterns are expected to change throughout this century because of climate change.

Objectives: We compared mortality associated with heat and cold in UK regions and Australian cities for current and projected climates and populations.

Methods: Time-series regression analyses were carried out on daily mortality in relation to ambient temperatures for UK regions and Australian cities to estimate relative risk functions for heat and cold and variations in risk parameters by age. Excess deaths due to heat and cold were estimated for future climates.

Results: In UK regions, cold-related mortality currently accounts for more than one order of magnitude more deaths than heat-related mortality (around 61 and 3 deaths per 100,000 population per year, respectively). In Australian cities, approximately 33 and 2 deaths per 100,000 population are associated every year with cold and heat, respectively. Although cold-related mortality is projected to decrease due to climate change to approximately 42 and 19 deaths per 100,000 population per year in UK regions and Australian cities, heat-related mortality is projected to increase to around 9 and 8 deaths per 100,000 population per year, respectively, by the 2080s, assuming no changes in susceptibility and structure of the population.

Conclusions: Projected changes in climate are likely to lead to an increase in heat-related mortality in the United Kingdom and Australia over this century, but also to a decrease in cold-related deaths. Future temperature-related mortality will be amplified by aging populations. Health protection from hot weather will become increasingly necessary in both countries, while protection from cold weather will be still needed.

Show MeSH

Related in: MedlinePlus

Estimates of heat-related and cold-related deaths in England and Wales regions (A,B) and five Australian cities (C,D) per year for all ages for 2001 populations (left) and projected populations (right). The mortality estimates are based on estimated RRs for heat or cold effects in each region, the daily mortality rate for all-cause deaths and population size in each region, and regional daily mean temperatures. Blue bars show estimates based on SRES A1B; B1 and A1FI estimates are shown as error bars. Temperature thresholds: 93rd percentile for heat and 60th percentile for cold. Baseline period: 1993–2006.
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4256046&req=5

f2: Estimates of heat-related and cold-related deaths in England and Wales regions (A,B) and five Australian cities (C,D) per year for all ages for 2001 populations (left) and projected populations (right). The mortality estimates are based on estimated RRs for heat or cold effects in each region, the daily mortality rate for all-cause deaths and population size in each region, and regional daily mean temperatures. Blue bars show estimates based on SRES A1B; B1 and A1FI estimates are shown as error bars. Temperature thresholds: 93rd percentile for heat and 60th percentile for cold. Baseline period: 1993–2006.

Mentions: For England and Wales, the estimated national-level percentage change in mortality associated with exposure to heat was 2.5% (95% CI: 1.9, 3.1) per 1°C rise in temperature above the heat threshold (93rd percentile of daily mean temperature, average of lags 0–1), whereas for cold it was 2.0% (95% CI: 1.8, 2.2) per 1°C drop in temperature below the cold threshold (60th percentile of daily mean temperature, average of lags 0–27). In the Australian cities, the estimated overall percentage change in mortality associated with exposure to heat was 2.1% (95% CI: 1.3, 2.9), whereas for cold it was 2.0% (95% CI: 1.5, 2.4) for the same percentile thresholds as for England and Wales. Although overall heat and cold-related RR estimates based on observed data for 1993–2006 were broadly similar within each country and between countries, there were more days below the 60th percentile cold threshold than above the 93rd percentile heat threshold, leading to larger numbers of deaths attributable to cold weather (Figure 2). The estimated overall mortality burdens for 1993–2006 in the UK regions were also much larger than those estimated for Australia because of the much larger population size in England and Wales compared with the total for the five Australian cities included in this study (approximately 52 and 12 million in 2001, respectively).


Comparative assessment of the effects of climate change on heat- and cold-related mortality in the United Kingdom and Australia.

Vardoulakis S, Dear K, Hajat S, Heaviside C, Eggen B, McMichael AJ - Environ. Health Perspect. (2014)

Estimates of heat-related and cold-related deaths in England and Wales regions (A,B) and five Australian cities (C,D) per year for all ages for 2001 populations (left) and projected populations (right). The mortality estimates are based on estimated RRs for heat or cold effects in each region, the daily mortality rate for all-cause deaths and population size in each region, and regional daily mean temperatures. Blue bars show estimates based on SRES A1B; B1 and A1FI estimates are shown as error bars. Temperature thresholds: 93rd percentile for heat and 60th percentile for cold. Baseline period: 1993–2006.
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4256046&req=5

f2: Estimates of heat-related and cold-related deaths in England and Wales regions (A,B) and five Australian cities (C,D) per year for all ages for 2001 populations (left) and projected populations (right). The mortality estimates are based on estimated RRs for heat or cold effects in each region, the daily mortality rate for all-cause deaths and population size in each region, and regional daily mean temperatures. Blue bars show estimates based on SRES A1B; B1 and A1FI estimates are shown as error bars. Temperature thresholds: 93rd percentile for heat and 60th percentile for cold. Baseline period: 1993–2006.
Mentions: For England and Wales, the estimated national-level percentage change in mortality associated with exposure to heat was 2.5% (95% CI: 1.9, 3.1) per 1°C rise in temperature above the heat threshold (93rd percentile of daily mean temperature, average of lags 0–1), whereas for cold it was 2.0% (95% CI: 1.8, 2.2) per 1°C drop in temperature below the cold threshold (60th percentile of daily mean temperature, average of lags 0–27). In the Australian cities, the estimated overall percentage change in mortality associated with exposure to heat was 2.1% (95% CI: 1.3, 2.9), whereas for cold it was 2.0% (95% CI: 1.5, 2.4) for the same percentile thresholds as for England and Wales. Although overall heat and cold-related RR estimates based on observed data for 1993–2006 were broadly similar within each country and between countries, there were more days below the 60th percentile cold threshold than above the 93rd percentile heat threshold, leading to larger numbers of deaths attributable to cold weather (Figure 2). The estimated overall mortality burdens for 1993–2006 in the UK regions were also much larger than those estimated for Australia because of the much larger population size in England and Wales compared with the total for the five Australian cities included in this study (approximately 52 and 12 million in 2001, respectively).

Bottom Line: High and low ambient temperatures are associated with increased mortality in temperate and subtropical climates.Although cold-related mortality is projected to decrease due to climate change to approximately 42 and 19 deaths per 100,000 population per year in UK regions and Australian cities, heat-related mortality is projected to increase to around 9 and 8 deaths per 100,000 population per year, respectively, by the 2080s, assuming no changes in susceptibility and structure of the population.Projected changes in climate are likely to lead to an increase in heat-related mortality in the United Kingdom and Australia over this century, but also to a decrease in cold-related deaths.

View Article: PubMed Central - PubMed

Affiliation: Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, United Kingdom.

ABSTRACT

Background: High and low ambient temperatures are associated with increased mortality in temperate and subtropical climates. Temperature-related mortality patterns are expected to change throughout this century because of climate change.

Objectives: We compared mortality associated with heat and cold in UK regions and Australian cities for current and projected climates and populations.

Methods: Time-series regression analyses were carried out on daily mortality in relation to ambient temperatures for UK regions and Australian cities to estimate relative risk functions for heat and cold and variations in risk parameters by age. Excess deaths due to heat and cold were estimated for future climates.

Results: In UK regions, cold-related mortality currently accounts for more than one order of magnitude more deaths than heat-related mortality (around 61 and 3 deaths per 100,000 population per year, respectively). In Australian cities, approximately 33 and 2 deaths per 100,000 population are associated every year with cold and heat, respectively. Although cold-related mortality is projected to decrease due to climate change to approximately 42 and 19 deaths per 100,000 population per year in UK regions and Australian cities, heat-related mortality is projected to increase to around 9 and 8 deaths per 100,000 population per year, respectively, by the 2080s, assuming no changes in susceptibility and structure of the population.

Conclusions: Projected changes in climate are likely to lead to an increase in heat-related mortality in the United Kingdom and Australia over this century, but also to a decrease in cold-related deaths. Future temperature-related mortality will be amplified by aging populations. Health protection from hot weather will become increasingly necessary in both countries, while protection from cold weather will be still needed.

Show MeSH
Related in: MedlinePlus