Limits...
Household cooking with solid fuels contributes to ambient PM2.5 air pollution and the burden of disease.

Chafe ZA, Brauer M, Klimont Z, Van Dingenen R, Mehta S, Rao S, Riahi K, Dentener F, Smith KR - Environ. Health Perspect. (2014)

Bottom Line: We estimated the proportion and concentrations of APM2.5 attributable to household cooking with solid fuels (PM2.5-cook) for the years 1990, 2005, and 2010 in 170 countries, and associated ill health.PM2.5 emissions from household cooking constitute an important portion of APM2.5 concentrations in many places, including India and China.Efforts to improve ambient air quality will be hindered if household cooking conditions are not addressed.

View Article: PubMed Central - PubMed

Affiliation: Energy and Resources Group, and.

ABSTRACT

Background: Approximately 2.8 billion people cook with solid fuels. Research has focused on the health impacts of indoor exposure to fine particulate pollution. Here, for the 2010 Global Burden of Disease project (GBD 2010), we evaluated the impact of household cooking with solid fuels on regional population-weighted ambient PM2.5 (particulate matter ≤ 2.5 μm) pollution (APM2.5).

Objectives: We estimated the proportion and concentrations of APM2.5 attributable to household cooking with solid fuels (PM2.5-cook) for the years 1990, 2005, and 2010 in 170 countries, and associated ill health.

Methods: We used an energy supply-driven emissions model (GAINS; Greenhouse Gas and Air Pollution Interactions and Synergies) and source-receptor model (TM5-FASST) to estimate the proportion of APM2.5 produced by households and the proportion of household PM2.5 emissions from cooking with solid fuels. We estimated health effects using GBD 2010 data on ill health from APM2.5 exposure.

Results: In 2010, household cooking with solid fuels accounted for 12% of APM2.5 globally, varying from 0% of APM2.5 in five higher-income regions to 37% (2.8 μg/m3 of 6.9 μg/m3 total) in southern sub-Saharan Africa. PM2.5-cook constituted > 10% of APM2.5 in seven regions housing 4.4 billion people. South Asia showed the highest regional concentration of APM2.5 from household cooking (8.6 μg/m3). On the basis of GBD 2010, we estimate that exposure to APM2.5 from cooking with solid fuels caused the loss of 370,000 lives and 9.9 million disability-adjusted life years globally in 2010.

Conclusions: PM2.5 emissions from household cooking constitute an important portion of APM2.5 concentrations in many places, including India and China. Efforts to improve ambient air quality will be hindered if household cooking conditions are not addressed.

Show MeSH

Related in: MedlinePlus

Population-exposure weighted concentration of ambient PM2.5 attributable to household cooking with solid fuels, 1990 (A) and 2010 (B).
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4256045&req=5

f2: Population-exposure weighted concentration of ambient PM2.5 attributable to household cooking with solid fuels, 1990 (A) and 2010 (B).

Mentions: Between 1990 and 2010, East Asia (including China) experienced a decline in absolute levels of PM2.5-cook (from 11 to 7 μg/m3) (Figure 2) as well as a decline in the percent of PM2.5 from cooking (from 23% to 10% in 2010) (Figure 1). This occurred alongside a global increase in ambient PM2.5 concentrations: Brauer et al. (2012) reported that population-weighted regional annual average PM2.5 concentrations rose between 1990 and 2010 in most parts of Asia, including East Asia (from 49 μg/m3 in 1990 to 72 μg/m3 in 2010), while falling in North America and Europe, including Central Europe (31 μg/m3 in 1990, 16 μg/m3 in 2010).


Household cooking with solid fuels contributes to ambient PM2.5 air pollution and the burden of disease.

Chafe ZA, Brauer M, Klimont Z, Van Dingenen R, Mehta S, Rao S, Riahi K, Dentener F, Smith KR - Environ. Health Perspect. (2014)

Population-exposure weighted concentration of ambient PM2.5 attributable to household cooking with solid fuels, 1990 (A) and 2010 (B).
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4256045&req=5

f2: Population-exposure weighted concentration of ambient PM2.5 attributable to household cooking with solid fuels, 1990 (A) and 2010 (B).
Mentions: Between 1990 and 2010, East Asia (including China) experienced a decline in absolute levels of PM2.5-cook (from 11 to 7 μg/m3) (Figure 2) as well as a decline in the percent of PM2.5 from cooking (from 23% to 10% in 2010) (Figure 1). This occurred alongside a global increase in ambient PM2.5 concentrations: Brauer et al. (2012) reported that population-weighted regional annual average PM2.5 concentrations rose between 1990 and 2010 in most parts of Asia, including East Asia (from 49 μg/m3 in 1990 to 72 μg/m3 in 2010), while falling in North America and Europe, including Central Europe (31 μg/m3 in 1990, 16 μg/m3 in 2010).

Bottom Line: We estimated the proportion and concentrations of APM2.5 attributable to household cooking with solid fuels (PM2.5-cook) for the years 1990, 2005, and 2010 in 170 countries, and associated ill health.PM2.5 emissions from household cooking constitute an important portion of APM2.5 concentrations in many places, including India and China.Efforts to improve ambient air quality will be hindered if household cooking conditions are not addressed.

View Article: PubMed Central - PubMed

Affiliation: Energy and Resources Group, and.

ABSTRACT

Background: Approximately 2.8 billion people cook with solid fuels. Research has focused on the health impacts of indoor exposure to fine particulate pollution. Here, for the 2010 Global Burden of Disease project (GBD 2010), we evaluated the impact of household cooking with solid fuels on regional population-weighted ambient PM2.5 (particulate matter ≤ 2.5 μm) pollution (APM2.5).

Objectives: We estimated the proportion and concentrations of APM2.5 attributable to household cooking with solid fuels (PM2.5-cook) for the years 1990, 2005, and 2010 in 170 countries, and associated ill health.

Methods: We used an energy supply-driven emissions model (GAINS; Greenhouse Gas and Air Pollution Interactions and Synergies) and source-receptor model (TM5-FASST) to estimate the proportion of APM2.5 produced by households and the proportion of household PM2.5 emissions from cooking with solid fuels. We estimated health effects using GBD 2010 data on ill health from APM2.5 exposure.

Results: In 2010, household cooking with solid fuels accounted for 12% of APM2.5 globally, varying from 0% of APM2.5 in five higher-income regions to 37% (2.8 μg/m3 of 6.9 μg/m3 total) in southern sub-Saharan Africa. PM2.5-cook constituted > 10% of APM2.5 in seven regions housing 4.4 billion people. South Asia showed the highest regional concentration of APM2.5 from household cooking (8.6 μg/m3). On the basis of GBD 2010, we estimate that exposure to APM2.5 from cooking with solid fuels caused the loss of 370,000 lives and 9.9 million disability-adjusted life years globally in 2010.

Conclusions: PM2.5 emissions from household cooking constitute an important portion of APM2.5 concentrations in many places, including India and China. Efforts to improve ambient air quality will be hindered if household cooking conditions are not addressed.

Show MeSH
Related in: MedlinePlus