Limits...
Household cooking with solid fuels contributes to ambient PM2.5 air pollution and the burden of disease.

Chafe ZA, Brauer M, Klimont Z, Van Dingenen R, Mehta S, Rao S, Riahi K, Dentener F, Smith KR - Environ. Health Perspect. (2014)

Bottom Line: We estimated the proportion and concentrations of APM2.5 attributable to household cooking with solid fuels (PM2.5-cook) for the years 1990, 2005, and 2010 in 170 countries, and associated ill health.PM2.5 emissions from household cooking constitute an important portion of APM2.5 concentrations in many places, including India and China.Efforts to improve ambient air quality will be hindered if household cooking conditions are not addressed.

View Article: PubMed Central - PubMed

Affiliation: Energy and Resources Group, and.

ABSTRACT

Background: Approximately 2.8 billion people cook with solid fuels. Research has focused on the health impacts of indoor exposure to fine particulate pollution. Here, for the 2010 Global Burden of Disease project (GBD 2010), we evaluated the impact of household cooking with solid fuels on regional population-weighted ambient PM2.5 (particulate matter ≤ 2.5 μm) pollution (APM2.5).

Objectives: We estimated the proportion and concentrations of APM2.5 attributable to household cooking with solid fuels (PM2.5-cook) for the years 1990, 2005, and 2010 in 170 countries, and associated ill health.

Methods: We used an energy supply-driven emissions model (GAINS; Greenhouse Gas and Air Pollution Interactions and Synergies) and source-receptor model (TM5-FASST) to estimate the proportion of APM2.5 produced by households and the proportion of household PM2.5 emissions from cooking with solid fuels. We estimated health effects using GBD 2010 data on ill health from APM2.5 exposure.

Results: In 2010, household cooking with solid fuels accounted for 12% of APM2.5 globally, varying from 0% of APM2.5 in five higher-income regions to 37% (2.8 μg/m3 of 6.9 μg/m3 total) in southern sub-Saharan Africa. PM2.5-cook constituted > 10% of APM2.5 in seven regions housing 4.4 billion people. South Asia showed the highest regional concentration of APM2.5 from household cooking (8.6 μg/m3). On the basis of GBD 2010, we estimate that exposure to APM2.5 from cooking with solid fuels caused the loss of 370,000 lives and 9.9 million disability-adjusted life years globally in 2010.

Conclusions: PM2.5 emissions from household cooking constitute an important portion of APM2.5 concentrations in many places, including India and China. Efforts to improve ambient air quality will be hindered if household cooking conditions are not addressed.

Show MeSH

Related in: MedlinePlus

Percentage of population-weighted ambient PM2.5 attributable to household cooking with solid fuels, 1990 (A) and 2010 (B).
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4256045&req=5

f1: Percentage of population-weighted ambient PM2.5 attributable to household cooking with solid fuels, 1990 (A) and 2010 (B).

Mentions: Globally, we estimated that about 12% of population-exposure weighted average ambient PM2.5 is attributable to household use of solid cooking fuels (Table 2, Figure 1). In 7 of the 20 regions analyzed, at least 10% of ambient PM2.5 was attributed to household cooking in 2010. These 7 regions encompass 41 countries and are home to > 4 billion people. In contrast, 7 of the regions analyzed (representing 56 countries with 1.4 billion people) had negligible levels (< 2% PM2.5-cook) throughout the 1990–2010 study period. By region, estimated proportions of APM2.5 attributable to PM2.5-cook in 2010 ranged from 0 to 37% (Figure 1). In general, we observed that an increase in country-level economic status was accompanied by a decrease in the contribution of household cooking to APM2.5.


Household cooking with solid fuels contributes to ambient PM2.5 air pollution and the burden of disease.

Chafe ZA, Brauer M, Klimont Z, Van Dingenen R, Mehta S, Rao S, Riahi K, Dentener F, Smith KR - Environ. Health Perspect. (2014)

Percentage of population-weighted ambient PM2.5 attributable to household cooking with solid fuels, 1990 (A) and 2010 (B).
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4256045&req=5

f1: Percentage of population-weighted ambient PM2.5 attributable to household cooking with solid fuels, 1990 (A) and 2010 (B).
Mentions: Globally, we estimated that about 12% of population-exposure weighted average ambient PM2.5 is attributable to household use of solid cooking fuels (Table 2, Figure 1). In 7 of the 20 regions analyzed, at least 10% of ambient PM2.5 was attributed to household cooking in 2010. These 7 regions encompass 41 countries and are home to > 4 billion people. In contrast, 7 of the regions analyzed (representing 56 countries with 1.4 billion people) had negligible levels (< 2% PM2.5-cook) throughout the 1990–2010 study period. By region, estimated proportions of APM2.5 attributable to PM2.5-cook in 2010 ranged from 0 to 37% (Figure 1). In general, we observed that an increase in country-level economic status was accompanied by a decrease in the contribution of household cooking to APM2.5.

Bottom Line: We estimated the proportion and concentrations of APM2.5 attributable to household cooking with solid fuels (PM2.5-cook) for the years 1990, 2005, and 2010 in 170 countries, and associated ill health.PM2.5 emissions from household cooking constitute an important portion of APM2.5 concentrations in many places, including India and China.Efforts to improve ambient air quality will be hindered if household cooking conditions are not addressed.

View Article: PubMed Central - PubMed

Affiliation: Energy and Resources Group, and.

ABSTRACT

Background: Approximately 2.8 billion people cook with solid fuels. Research has focused on the health impacts of indoor exposure to fine particulate pollution. Here, for the 2010 Global Burden of Disease project (GBD 2010), we evaluated the impact of household cooking with solid fuels on regional population-weighted ambient PM2.5 (particulate matter ≤ 2.5 μm) pollution (APM2.5).

Objectives: We estimated the proportion and concentrations of APM2.5 attributable to household cooking with solid fuels (PM2.5-cook) for the years 1990, 2005, and 2010 in 170 countries, and associated ill health.

Methods: We used an energy supply-driven emissions model (GAINS; Greenhouse Gas and Air Pollution Interactions and Synergies) and source-receptor model (TM5-FASST) to estimate the proportion of APM2.5 produced by households and the proportion of household PM2.5 emissions from cooking with solid fuels. We estimated health effects using GBD 2010 data on ill health from APM2.5 exposure.

Results: In 2010, household cooking with solid fuels accounted for 12% of APM2.5 globally, varying from 0% of APM2.5 in five higher-income regions to 37% (2.8 μg/m3 of 6.9 μg/m3 total) in southern sub-Saharan Africa. PM2.5-cook constituted > 10% of APM2.5 in seven regions housing 4.4 billion people. South Asia showed the highest regional concentration of APM2.5 from household cooking (8.6 μg/m3). On the basis of GBD 2010, we estimate that exposure to APM2.5 from cooking with solid fuels caused the loss of 370,000 lives and 9.9 million disability-adjusted life years globally in 2010.

Conclusions: PM2.5 emissions from household cooking constitute an important portion of APM2.5 concentrations in many places, including India and China. Efforts to improve ambient air quality will be hindered if household cooking conditions are not addressed.

Show MeSH
Related in: MedlinePlus