Limits...
Lightening up Light Therapy: Activation of Retrograde Signaling Pathway by Photobiomodulation.

Kim HP - Biomol Ther (Seoul) (2014)

Bottom Line: Photobiomodulation utilizes monochromatic (or quasimonochromatic) light in the electromagnetic region of 600∼1000 nm for the treatment of soft tissues in a nondestructive and nonthermal mode.It is conceivable that photobiomodulation is based upon the ability of the light to alter cell metabolism as it is absorbed by general hemoproteins and cytochrome c oxidase (COX) in particular.Further a possible role of water as a photoreceptor will be suggested.

View Article: PubMed Central - PubMed

Affiliation: Ajou University, School of Pharmacy, Suwon 443-749, Republic of Korea.

ABSTRACT
Photobiomodulation utilizes monochromatic (or quasimonochromatic) light in the electromagnetic region of 600∼1000 nm for the treatment of soft tissues in a nondestructive and nonthermal mode. It is conceivable that photobiomodulation is based upon the ability of the light to alter cell metabolism as it is absorbed by general hemoproteins and cytochrome c oxidase (COX) in particular. Recently it has been suggested radiation of visible and infrared (IR) activates retrograde signaling pathway from mitochondria to nucleus. In this review, the role of COX in the photobiomodulation will be discussed. Further a possible role of water as a photoreceptor will be suggested.

No MeSH data available.


Integration of intracellular mitochondrial function rely on both anterograde and retrograde signaling pathway. The anterograde signaling system transduces signals from environments (external and/or internal) to nucleus, activating genomic program to adjust mitochondrial functioning. The retrograde signaling system monitors the function of mitochondria and transduce signals back to the nucleus. Studies on cytoplasmic transducers are actively pursued. See text for details.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4256027&req=5

f2-bt-22-491: Integration of intracellular mitochondrial function rely on both anterograde and retrograde signaling pathway. The anterograde signaling system transduces signals from environments (external and/or internal) to nucleus, activating genomic program to adjust mitochondrial functioning. The retrograde signaling system monitors the function of mitochondria and transduce signals back to the nucleus. Studies on cytoplasmic transducers are actively pursued. See text for details.

Mentions: The rationale of retrograde signaling from mitochondria is based upon 2 observations. First, PBM (300–860 nm) can increase in DNA synthesis rate in cultured cells. However, the nucleus does not have chromophores absorbing light in this range of spectrum. Second, cumulating data by this time clearly shown that the photoacceptors are localized to the respiratory chain of mitochondria (Karu, 2008). Therefore it would be reasonable to propose the existence of cellular signaling pathway originated from this organelle. Experimental data also support retrograde signaling can be mediated via mitochondrial membrane potential (MMP), reactive oxygen species (ROS), changes in calcium flow, NO binding to COX (Fig. 1). Impairment of mitochondrial functioning routinely generates signaling mediators described above, which may determine the fate of this organelle. Rapidly growing cells prefer cell death instead of fixing the damaged mitochondria. In contrast, quiescent cells such as neuron try to recover the injured mitochondria by retrograde signaling pathway (Fig. 2). Therefore, it would be a survival strategy adopted by cells or organisms to maintain homeostasis of the quintessential sub-cellular organelle, mitochondria. In line with this notion, Park et al. (2013) reported that repeated thermal therapy by far-IR irradiation improves vascular functions via acute activation of endothelial NO synthase (NOS). The increase of eNOS was accompanied by an increase in intracellular calcium levels. Therefore, they suggested a possible involvement of temperature-sensitive calcium channel, transient receptors potential vannilloid (TRPV) ion channel at the plasma membrane as a photoacceptor. They did not discuss the involvement of retrograde signaling pathway in this setting, it might be possible that NO acts as a mediator for the signaling pathway.


Lightening up Light Therapy: Activation of Retrograde Signaling Pathway by Photobiomodulation.

Kim HP - Biomol Ther (Seoul) (2014)

Integration of intracellular mitochondrial function rely on both anterograde and retrograde signaling pathway. The anterograde signaling system transduces signals from environments (external and/or internal) to nucleus, activating genomic program to adjust mitochondrial functioning. The retrograde signaling system monitors the function of mitochondria and transduce signals back to the nucleus. Studies on cytoplasmic transducers are actively pursued. See text for details.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4256027&req=5

f2-bt-22-491: Integration of intracellular mitochondrial function rely on both anterograde and retrograde signaling pathway. The anterograde signaling system transduces signals from environments (external and/or internal) to nucleus, activating genomic program to adjust mitochondrial functioning. The retrograde signaling system monitors the function of mitochondria and transduce signals back to the nucleus. Studies on cytoplasmic transducers are actively pursued. See text for details.
Mentions: The rationale of retrograde signaling from mitochondria is based upon 2 observations. First, PBM (300–860 nm) can increase in DNA synthesis rate in cultured cells. However, the nucleus does not have chromophores absorbing light in this range of spectrum. Second, cumulating data by this time clearly shown that the photoacceptors are localized to the respiratory chain of mitochondria (Karu, 2008). Therefore it would be reasonable to propose the existence of cellular signaling pathway originated from this organelle. Experimental data also support retrograde signaling can be mediated via mitochondrial membrane potential (MMP), reactive oxygen species (ROS), changes in calcium flow, NO binding to COX (Fig. 1). Impairment of mitochondrial functioning routinely generates signaling mediators described above, which may determine the fate of this organelle. Rapidly growing cells prefer cell death instead of fixing the damaged mitochondria. In contrast, quiescent cells such as neuron try to recover the injured mitochondria by retrograde signaling pathway (Fig. 2). Therefore, it would be a survival strategy adopted by cells or organisms to maintain homeostasis of the quintessential sub-cellular organelle, mitochondria. In line with this notion, Park et al. (2013) reported that repeated thermal therapy by far-IR irradiation improves vascular functions via acute activation of endothelial NO synthase (NOS). The increase of eNOS was accompanied by an increase in intracellular calcium levels. Therefore, they suggested a possible involvement of temperature-sensitive calcium channel, transient receptors potential vannilloid (TRPV) ion channel at the plasma membrane as a photoacceptor. They did not discuss the involvement of retrograde signaling pathway in this setting, it might be possible that NO acts as a mediator for the signaling pathway.

Bottom Line: Photobiomodulation utilizes monochromatic (or quasimonochromatic) light in the electromagnetic region of 600∼1000 nm for the treatment of soft tissues in a nondestructive and nonthermal mode.It is conceivable that photobiomodulation is based upon the ability of the light to alter cell metabolism as it is absorbed by general hemoproteins and cytochrome c oxidase (COX) in particular.Further a possible role of water as a photoreceptor will be suggested.

View Article: PubMed Central - PubMed

Affiliation: Ajou University, School of Pharmacy, Suwon 443-749, Republic of Korea.

ABSTRACT
Photobiomodulation utilizes monochromatic (or quasimonochromatic) light in the electromagnetic region of 600∼1000 nm for the treatment of soft tissues in a nondestructive and nonthermal mode. It is conceivable that photobiomodulation is based upon the ability of the light to alter cell metabolism as it is absorbed by general hemoproteins and cytochrome c oxidase (COX) in particular. Recently it has been suggested radiation of visible and infrared (IR) activates retrograde signaling pathway from mitochondria to nucleus. In this review, the role of COX in the photobiomodulation will be discussed. Further a possible role of water as a photoreceptor will be suggested.

No MeSH data available.