Limits...
Development of a genetic sexing strain in Bactrocera carambolae (Diptera: Tephritidae) by introgression of sex sorting components from B. dorsalis, Salaya1 strain.

Isasawin S, Aketarawong N, Lertsiri S, Thanaphum S - BMC Genet. (2014)

Bottom Line: This fruit fly belongs to Bactrocera dorsalis species complex.Further experiments showed that the sterile males of Salaya5 can compete with wild males for mating with wild females in field cage conditions.In addition, mating competitiveness tests suggested that Salaya5 has a potential to be used in B. carambolae SIT programs based on male-only releases.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Background: The carambola fruit fly, Bactrocera carambolae Drew & Hancock is a high profile key pest that is widely distributed in the southwestern ASEAN region. In addition, it has trans-continentally invaded Suriname, where it has been expanding east and southward since 1975. This fruit fly belongs to Bactrocera dorsalis species complex. The development and application of a genetic sexing strain (Salaya1) of B. dorsalis sensu stricto (s.s.) (Hendel) for the sterile insect technique (SIT) has improved the fruit fly control. However, matings between B. dorsalis s.s. and B. carambolae are incompatible, which hinder the application of the Salaya1 strain to control the carambola fruit fly. To solve this problem, we introduced genetic sexing components from the Salaya1 strain into the B. carambolae genome by interspecific hybridization.

Results: Morphological characteristics, mating competitiveness, male pheromone profiles, and genetic relationships revealed consistencies that helped to distinguish Salaya1 and B. carambolae strains. A Y-autosome translocation linking the dominant wild-type allele of white pupae gene and a free autosome carrying a recessive white pupae homologue from the Salaya1 strain were introgressed into the gene pool of B. carambolae. A panel of Y-pseudo-linked microsatellite loci of the Salaya1 strain served as markers for the introgression experiments. This resulted in a newly derived genetic sexing strain called Salaya5, with morphological characteristics corresponding to B. carambolae. The rectal gland pheromone profile of Salaya5 males also contained a distinctive component of B. carambolae. Microsatellite DNA analyses confirmed the close genetic relationships between the Salaya5 strain and wild B. carambolae populations. Further experiments showed that the sterile males of Salaya5 can compete with wild males for mating with wild females in field cage conditions.

Conclusions: Introgression of sex sorting components from the Salaya1 strain to a closely related B. carambolae strain generated a new genetic sexing strain, Salaya5. Morphology-based taxonomic characteristics, distinctive pheromone components, microsatellite DNA markers, genetic relationships, and mating competitiveness provided parental baseline data and validation tools for the new strain. The Salaya5 strain shows a close similarity with those features in the wild B. carambolae strain. In addition, mating competitiveness tests suggested that Salaya5 has a potential to be used in B. carambolae SIT programs based on male-only releases.

Show MeSH

Related in: MedlinePlus

Morphological characters distinguishing the B. dorsalis and B. carambolae flies.B. dorsalis (Salaya1) (A), B. carambolae (Jakarta) (B), and Salaya5 (C); Fruit fly male and female individuals are in sub-figures 1 to 3 and 4 to 6, respectively; the red arrow is pointed at the abdominal terga III-V, the medial longitudinal dark band. Their respective right legs are below in sub-figures 7 to 12, the red triangle is pointing at a subapical dark spot on outer surfaces of fore femora in females. The respective lateral right abdomens (side-view) are also below in sub-figures 13, 15, 17, 19, and 21, respectively; the red arrows are pointed at right antero-lateral corner with a rectangular bar shape in (B) and (C) which are present in B. carambolae and Salaya5. Likewise, the respective right wings are below in sub-figures 14, 16, 18, 20, 22, and 24; red open circles indicate wing costal bands expanding at apex of R4+5 which are present in B. carambolae and Salaya5.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4255791&req=5

Figure 1: Morphological characters distinguishing the B. dorsalis and B. carambolae flies.B. dorsalis (Salaya1) (A), B. carambolae (Jakarta) (B), and Salaya5 (C); Fruit fly male and female individuals are in sub-figures 1 to 3 and 4 to 6, respectively; the red arrow is pointed at the abdominal terga III-V, the medial longitudinal dark band. Their respective right legs are below in sub-figures 7 to 12, the red triangle is pointing at a subapical dark spot on outer surfaces of fore femora in females. The respective lateral right abdomens (side-view) are also below in sub-figures 13, 15, 17, 19, and 21, respectively; the red arrows are pointed at right antero-lateral corner with a rectangular bar shape in (B) and (C) which are present in B. carambolae and Salaya5. Likewise, the respective right wings are below in sub-figures 14, 16, 18, 20, 22, and 24; red open circles indicate wing costal bands expanding at apex of R4+5 which are present in B. carambolae and Salaya5.

Mentions: B. dorsalis and B. carambolae have several morphological character differences according to Drew and Hancock (1994) [7]. Observation at the abdominal terga III-V reveals that the medial longitudinal dark band is narrow (Figures 1A1 to 1A6) and the anterolateral corners of tergum IV are triangular (Figures 1A1 to 1A6 and Figures 1A13, 1A15, 1A17, 1A19, 1A21, and 1A23) for B. dorsalis. However, the medial longitudinal black band is of medium width (Figures 1B1 to 1B6) and the anterolateral corners of tergum IV are large, rectangular, and bar-shaped (Figures 1B1 to 1B6 and Figures 1B13, 1B15, 1B17, 1B19, 1B21, and 1B23) in B. carambolae. Observation at the legs (femora) reveals that the femora are entirely fulvous (Figures 1A7 to 1A12) for B. dorsalis. The femora of the B carambolae are also entirely fulvous (Figures 1B7 to 1B12) but have a subapical dark spot on the outer surfaces of the fore femora, usually in females (Figures 1B10 to 1B12). In addition, the wing costal band observation (Figures 1A14, 1A16, 1A18, 1A20, 1A22, and 1A24) reveals that it is confluent with R2+3 and remains narrow and of uniform width to the apex of the wing (occasionally with a slight swelling around the apex of R4+5) for B. dorsalis. The costal band of B. carambolae overlaps with R2+3, especially before the apex of this vein, and expands across the apex of R4+5 (Figures 1B14, 1B16, 1B18, 1B20, 1B22, and 1B24).


Development of a genetic sexing strain in Bactrocera carambolae (Diptera: Tephritidae) by introgression of sex sorting components from B. dorsalis, Salaya1 strain.

Isasawin S, Aketarawong N, Lertsiri S, Thanaphum S - BMC Genet. (2014)

Morphological characters distinguishing the B. dorsalis and B. carambolae flies.B. dorsalis (Salaya1) (A), B. carambolae (Jakarta) (B), and Salaya5 (C); Fruit fly male and female individuals are in sub-figures 1 to 3 and 4 to 6, respectively; the red arrow is pointed at the abdominal terga III-V, the medial longitudinal dark band. Their respective right legs are below in sub-figures 7 to 12, the red triangle is pointing at a subapical dark spot on outer surfaces of fore femora in females. The respective lateral right abdomens (side-view) are also below in sub-figures 13, 15, 17, 19, and 21, respectively; the red arrows are pointed at right antero-lateral corner with a rectangular bar shape in (B) and (C) which are present in B. carambolae and Salaya5. Likewise, the respective right wings are below in sub-figures 14, 16, 18, 20, 22, and 24; red open circles indicate wing costal bands expanding at apex of R4+5 which are present in B. carambolae and Salaya5.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4255791&req=5

Figure 1: Morphological characters distinguishing the B. dorsalis and B. carambolae flies.B. dorsalis (Salaya1) (A), B. carambolae (Jakarta) (B), and Salaya5 (C); Fruit fly male and female individuals are in sub-figures 1 to 3 and 4 to 6, respectively; the red arrow is pointed at the abdominal terga III-V, the medial longitudinal dark band. Their respective right legs are below in sub-figures 7 to 12, the red triangle is pointing at a subapical dark spot on outer surfaces of fore femora in females. The respective lateral right abdomens (side-view) are also below in sub-figures 13, 15, 17, 19, and 21, respectively; the red arrows are pointed at right antero-lateral corner with a rectangular bar shape in (B) and (C) which are present in B. carambolae and Salaya5. Likewise, the respective right wings are below in sub-figures 14, 16, 18, 20, 22, and 24; red open circles indicate wing costal bands expanding at apex of R4+5 which are present in B. carambolae and Salaya5.
Mentions: B. dorsalis and B. carambolae have several morphological character differences according to Drew and Hancock (1994) [7]. Observation at the abdominal terga III-V reveals that the medial longitudinal dark band is narrow (Figures 1A1 to 1A6) and the anterolateral corners of tergum IV are triangular (Figures 1A1 to 1A6 and Figures 1A13, 1A15, 1A17, 1A19, 1A21, and 1A23) for B. dorsalis. However, the medial longitudinal black band is of medium width (Figures 1B1 to 1B6) and the anterolateral corners of tergum IV are large, rectangular, and bar-shaped (Figures 1B1 to 1B6 and Figures 1B13, 1B15, 1B17, 1B19, 1B21, and 1B23) in B. carambolae. Observation at the legs (femora) reveals that the femora are entirely fulvous (Figures 1A7 to 1A12) for B. dorsalis. The femora of the B carambolae are also entirely fulvous (Figures 1B7 to 1B12) but have a subapical dark spot on the outer surfaces of the fore femora, usually in females (Figures 1B10 to 1B12). In addition, the wing costal band observation (Figures 1A14, 1A16, 1A18, 1A20, 1A22, and 1A24) reveals that it is confluent with R2+3 and remains narrow and of uniform width to the apex of the wing (occasionally with a slight swelling around the apex of R4+5) for B. dorsalis. The costal band of B. carambolae overlaps with R2+3, especially before the apex of this vein, and expands across the apex of R4+5 (Figures 1B14, 1B16, 1B18, 1B20, 1B22, and 1B24).

Bottom Line: This fruit fly belongs to Bactrocera dorsalis species complex.Further experiments showed that the sterile males of Salaya5 can compete with wild males for mating with wild females in field cage conditions.In addition, mating competitiveness tests suggested that Salaya5 has a potential to be used in B. carambolae SIT programs based on male-only releases.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Background: The carambola fruit fly, Bactrocera carambolae Drew & Hancock is a high profile key pest that is widely distributed in the southwestern ASEAN region. In addition, it has trans-continentally invaded Suriname, where it has been expanding east and southward since 1975. This fruit fly belongs to Bactrocera dorsalis species complex. The development and application of a genetic sexing strain (Salaya1) of B. dorsalis sensu stricto (s.s.) (Hendel) for the sterile insect technique (SIT) has improved the fruit fly control. However, matings between B. dorsalis s.s. and B. carambolae are incompatible, which hinder the application of the Salaya1 strain to control the carambola fruit fly. To solve this problem, we introduced genetic sexing components from the Salaya1 strain into the B. carambolae genome by interspecific hybridization.

Results: Morphological characteristics, mating competitiveness, male pheromone profiles, and genetic relationships revealed consistencies that helped to distinguish Salaya1 and B. carambolae strains. A Y-autosome translocation linking the dominant wild-type allele of white pupae gene and a free autosome carrying a recessive white pupae homologue from the Salaya1 strain were introgressed into the gene pool of B. carambolae. A panel of Y-pseudo-linked microsatellite loci of the Salaya1 strain served as markers for the introgression experiments. This resulted in a newly derived genetic sexing strain called Salaya5, with morphological characteristics corresponding to B. carambolae. The rectal gland pheromone profile of Salaya5 males also contained a distinctive component of B. carambolae. Microsatellite DNA analyses confirmed the close genetic relationships between the Salaya5 strain and wild B. carambolae populations. Further experiments showed that the sterile males of Salaya5 can compete with wild males for mating with wild females in field cage conditions.

Conclusions: Introgression of sex sorting components from the Salaya1 strain to a closely related B. carambolae strain generated a new genetic sexing strain, Salaya5. Morphology-based taxonomic characteristics, distinctive pheromone components, microsatellite DNA markers, genetic relationships, and mating competitiveness provided parental baseline data and validation tools for the new strain. The Salaya5 strain shows a close similarity with those features in the wild B. carambolae strain. In addition, mating competitiveness tests suggested that Salaya5 has a potential to be used in B. carambolae SIT programs based on male-only releases.

Show MeSH
Related in: MedlinePlus