Limits...
Development, genetic and cytogenetic analyses of genetic sexing strains of the Mexican fruit fly, Anastrepha ludens Loew (Diptera: Tephritidae).

Zepeda-Cisneros CS, Meza Hernández JS, García-Martínez V, Ibañez-Palacios J, Zacharopoulou A, Franz G - BMC Genet. (2014)

Bottom Line: To increase the efficiency of this technique, we have developed a genetic sexing strain (GSS) in which the sexing mechanism is based on a pupal colour dimorphism (brown-black) and is the result of a reciprocal translocation between the Y chromosome and the autosome bearing the black pupae (bp) locus.The translocation strain named Tapachula-7 showed minimal effect on survival and the best genetic stability of all ten strains.The present work is the first report of the construction of GSS of Anastrepha ludens, with potential use in a future Moscafrut operational program.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Background: Anastrepha ludens is among the pests that have a major impact on México's economy because it attacks fruits as citrus and mangoes. The Mexican Federal government uses integrated pest management to control A. ludens through the Programa Nacional Moscas de la Fruta [National Fruit Fly Program, SAGARPA-SENASICA]. One of the main components of this program is the sterile insect technique (SIT), which is used to control field populations of the pest by releasing sterile flies.

Results: To increase the efficiency of this technique, we have developed a genetic sexing strain (GSS) in which the sexing mechanism is based on a pupal colour dimorphism (brown-black) and is the result of a reciprocal translocation between the Y chromosome and the autosome bearing the black pupae (bp) locus. Ten strains producing wild-type (brown pupae) males and mutant (black pupae) females were isolated. Subsequent evaluations for several generations were performed in most of these strains. The translocation strain named Tapachula-7 showed minimal effect on survival and the best genetic stability of all ten strains. Genetic and cytogenetic analyses were performed using mitotic and polytene chromosomes and we succeeded to characterize the chromosomal structure of this reciprocal translocation and map the autosome breakpoint, despite the fact that the Y chromosome is not visible in polytene nuclei following standard staining.

Conclusions: We show that mitotic and polytene chromosomes can be used in cytogenetic analyses towards the development of genetic control methods in this pest species. The present work is the first report of the construction of GSS of Anastrepha ludens, with potential use in a future Moscafrut operational program.

Show MeSH

Related in: MedlinePlus

Schematic representation of the correlation between mitotic chromosome 2 and polytene chromosome III in wild-type and Tapachula-7 strain showing the induced translocation in mitotic (2-Y) (Y-2) and the respective polytene chromosome (III-Y) (Y-III). Y represents sex chromosome.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4255765&req=5

Figure 6: Schematic representation of the correlation between mitotic chromosome 2 and polytene chromosome III in wild-type and Tapachula-7 strain showing the induced translocation in mitotic (2-Y) (Y-2) and the respective polytene chromosome (III-Y) (Y-III). Y represents sex chromosome.

Mentions: The cytogenetic studies performed using mitotic chromosomes showed that T(Y:bp+)-7 carries a simple reciprocal translocation between the longest autosome, chromosome 2, and the Y chromosome. Analysis of polytene chromosomes permitted us to identify the polytene element involved in the translocation. Based on the specific ectopic pairing observed between the telomeres of autosomes in the A. ludens polytene nuclei [21], we show that chromosome 2 of the mitotic karyotype corresponds to polytene element III (Figure 6). In addition, this analysis permitted us to map the autosomal breakpoint on chromosome III despite the fact that the Y chromosome remains underreplicated in polytene nuclei and cannot be identified after standard staining. The autosomal breakpoint is close to the beginning of region 25 of chromosome III according to the polytene maps of the A. ludens (Figure 4). It should be emphasized that both translocation chromosomes possess centromeres and telomeres, required for stability during cell divisions.


Development, genetic and cytogenetic analyses of genetic sexing strains of the Mexican fruit fly, Anastrepha ludens Loew (Diptera: Tephritidae).

Zepeda-Cisneros CS, Meza Hernández JS, García-Martínez V, Ibañez-Palacios J, Zacharopoulou A, Franz G - BMC Genet. (2014)

Schematic representation of the correlation between mitotic chromosome 2 and polytene chromosome III in wild-type and Tapachula-7 strain showing the induced translocation in mitotic (2-Y) (Y-2) and the respective polytene chromosome (III-Y) (Y-III). Y represents sex chromosome.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4255765&req=5

Figure 6: Schematic representation of the correlation between mitotic chromosome 2 and polytene chromosome III in wild-type and Tapachula-7 strain showing the induced translocation in mitotic (2-Y) (Y-2) and the respective polytene chromosome (III-Y) (Y-III). Y represents sex chromosome.
Mentions: The cytogenetic studies performed using mitotic chromosomes showed that T(Y:bp+)-7 carries a simple reciprocal translocation between the longest autosome, chromosome 2, and the Y chromosome. Analysis of polytene chromosomes permitted us to identify the polytene element involved in the translocation. Based on the specific ectopic pairing observed between the telomeres of autosomes in the A. ludens polytene nuclei [21], we show that chromosome 2 of the mitotic karyotype corresponds to polytene element III (Figure 6). In addition, this analysis permitted us to map the autosomal breakpoint on chromosome III despite the fact that the Y chromosome remains underreplicated in polytene nuclei and cannot be identified after standard staining. The autosomal breakpoint is close to the beginning of region 25 of chromosome III according to the polytene maps of the A. ludens (Figure 4). It should be emphasized that both translocation chromosomes possess centromeres and telomeres, required for stability during cell divisions.

Bottom Line: To increase the efficiency of this technique, we have developed a genetic sexing strain (GSS) in which the sexing mechanism is based on a pupal colour dimorphism (brown-black) and is the result of a reciprocal translocation between the Y chromosome and the autosome bearing the black pupae (bp) locus.The translocation strain named Tapachula-7 showed minimal effect on survival and the best genetic stability of all ten strains.The present work is the first report of the construction of GSS of Anastrepha ludens, with potential use in a future Moscafrut operational program.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Background: Anastrepha ludens is among the pests that have a major impact on México's economy because it attacks fruits as citrus and mangoes. The Mexican Federal government uses integrated pest management to control A. ludens through the Programa Nacional Moscas de la Fruta [National Fruit Fly Program, SAGARPA-SENASICA]. One of the main components of this program is the sterile insect technique (SIT), which is used to control field populations of the pest by releasing sterile flies.

Results: To increase the efficiency of this technique, we have developed a genetic sexing strain (GSS) in which the sexing mechanism is based on a pupal colour dimorphism (brown-black) and is the result of a reciprocal translocation between the Y chromosome and the autosome bearing the black pupae (bp) locus. Ten strains producing wild-type (brown pupae) males and mutant (black pupae) females were isolated. Subsequent evaluations for several generations were performed in most of these strains. The translocation strain named Tapachula-7 showed minimal effect on survival and the best genetic stability of all ten strains. Genetic and cytogenetic analyses were performed using mitotic and polytene chromosomes and we succeeded to characterize the chromosomal structure of this reciprocal translocation and map the autosome breakpoint, despite the fact that the Y chromosome is not visible in polytene nuclei following standard staining.

Conclusions: We show that mitotic and polytene chromosomes can be used in cytogenetic analyses towards the development of genetic control methods in this pest species. The present work is the first report of the construction of GSS of Anastrepha ludens, with potential use in a future Moscafrut operational program.

Show MeSH
Related in: MedlinePlus