Limits...
Development, genetic and cytogenetic analyses of genetic sexing strains of the Mexican fruit fly, Anastrepha ludens Loew (Diptera: Tephritidae).

Zepeda-Cisneros CS, Meza Hernández JS, García-Martínez V, Ibañez-Palacios J, Zacharopoulou A, Franz G - BMC Genet. (2014)

Bottom Line: To increase the efficiency of this technique, we have developed a genetic sexing strain (GSS) in which the sexing mechanism is based on a pupal colour dimorphism (brown-black) and is the result of a reciprocal translocation between the Y chromosome and the autosome bearing the black pupae (bp) locus.The translocation strain named Tapachula-7 showed minimal effect on survival and the best genetic stability of all ten strains.The present work is the first report of the construction of GSS of Anastrepha ludens, with potential use in a future Moscafrut operational program.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Background: Anastrepha ludens is among the pests that have a major impact on México's economy because it attacks fruits as citrus and mangoes. The Mexican Federal government uses integrated pest management to control A. ludens through the Programa Nacional Moscas de la Fruta [National Fruit Fly Program, SAGARPA-SENASICA]. One of the main components of this program is the sterile insect technique (SIT), which is used to control field populations of the pest by releasing sterile flies.

Results: To increase the efficiency of this technique, we have developed a genetic sexing strain (GSS) in which the sexing mechanism is based on a pupal colour dimorphism (brown-black) and is the result of a reciprocal translocation between the Y chromosome and the autosome bearing the black pupae (bp) locus. Ten strains producing wild-type (brown pupae) males and mutant (black pupae) females were isolated. Subsequent evaluations for several generations were performed in most of these strains. The translocation strain named Tapachula-7 showed minimal effect on survival and the best genetic stability of all ten strains. Genetic and cytogenetic analyses were performed using mitotic and polytene chromosomes and we succeeded to characterize the chromosomal structure of this reciprocal translocation and map the autosome breakpoint, despite the fact that the Y chromosome is not visible in polytene nuclei following standard staining.

Conclusions: We show that mitotic and polytene chromosomes can be used in cytogenetic analyses towards the development of genetic control methods in this pest species. The present work is the first report of the construction of GSS of Anastrepha ludens, with potential use in a future Moscafrut operational program.

Show MeSH

Related in: MedlinePlus

Larvae, pupae and adults from the GSS Tapachula -7 based on the bp mutation. The males can be identified in the larval stage based on the brown coloration of their anal lobes compared to the black coloration of the females. a) wild-type males. b) black pupae females. Arrows point to the anal lobes.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4255765&req=5

Figure 1: Larvae, pupae and adults from the GSS Tapachula -7 based on the bp mutation. The males can be identified in the larval stage based on the brown coloration of their anal lobes compared to the black coloration of the females. a) wild-type males. b) black pupae females. Arrows point to the anal lobes.

Mentions: Inbreeding the F1 produced wild-type and mutant phenotypes at a ratio of 3:1 (Table 1). From these results, we conclude that the bp mutation is recessive and autosomal. The correct classification of the colour of the pupae was confirmed based on the pigmentation of the adults. The abdomen, thorax and wings of black pupae adults are darker than the wild-type flies. In addition, the black pupae phenotype can be identified in the larval stage based on the black coloration of their anal lobes (Figure 1).


Development, genetic and cytogenetic analyses of genetic sexing strains of the Mexican fruit fly, Anastrepha ludens Loew (Diptera: Tephritidae).

Zepeda-Cisneros CS, Meza Hernández JS, García-Martínez V, Ibañez-Palacios J, Zacharopoulou A, Franz G - BMC Genet. (2014)

Larvae, pupae and adults from the GSS Tapachula -7 based on the bp mutation. The males can be identified in the larval stage based on the brown coloration of their anal lobes compared to the black coloration of the females. a) wild-type males. b) black pupae females. Arrows point to the anal lobes.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4255765&req=5

Figure 1: Larvae, pupae and adults from the GSS Tapachula -7 based on the bp mutation. The males can be identified in the larval stage based on the brown coloration of their anal lobes compared to the black coloration of the females. a) wild-type males. b) black pupae females. Arrows point to the anal lobes.
Mentions: Inbreeding the F1 produced wild-type and mutant phenotypes at a ratio of 3:1 (Table 1). From these results, we conclude that the bp mutation is recessive and autosomal. The correct classification of the colour of the pupae was confirmed based on the pigmentation of the adults. The abdomen, thorax and wings of black pupae adults are darker than the wild-type flies. In addition, the black pupae phenotype can be identified in the larval stage based on the black coloration of their anal lobes (Figure 1).

Bottom Line: To increase the efficiency of this technique, we have developed a genetic sexing strain (GSS) in which the sexing mechanism is based on a pupal colour dimorphism (brown-black) and is the result of a reciprocal translocation between the Y chromosome and the autosome bearing the black pupae (bp) locus.The translocation strain named Tapachula-7 showed minimal effect on survival and the best genetic stability of all ten strains.The present work is the first report of the construction of GSS of Anastrepha ludens, with potential use in a future Moscafrut operational program.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Background: Anastrepha ludens is among the pests that have a major impact on México's economy because it attacks fruits as citrus and mangoes. The Mexican Federal government uses integrated pest management to control A. ludens through the Programa Nacional Moscas de la Fruta [National Fruit Fly Program, SAGARPA-SENASICA]. One of the main components of this program is the sterile insect technique (SIT), which is used to control field populations of the pest by releasing sterile flies.

Results: To increase the efficiency of this technique, we have developed a genetic sexing strain (GSS) in which the sexing mechanism is based on a pupal colour dimorphism (brown-black) and is the result of a reciprocal translocation between the Y chromosome and the autosome bearing the black pupae (bp) locus. Ten strains producing wild-type (brown pupae) males and mutant (black pupae) females were isolated. Subsequent evaluations for several generations were performed in most of these strains. The translocation strain named Tapachula-7 showed minimal effect on survival and the best genetic stability of all ten strains. Genetic and cytogenetic analyses were performed using mitotic and polytene chromosomes and we succeeded to characterize the chromosomal structure of this reciprocal translocation and map the autosome breakpoint, despite the fact that the Y chromosome is not visible in polytene nuclei following standard staining.

Conclusions: We show that mitotic and polytene chromosomes can be used in cytogenetic analyses towards the development of genetic control methods in this pest species. The present work is the first report of the construction of GSS of Anastrepha ludens, with potential use in a future Moscafrut operational program.

Show MeSH
Related in: MedlinePlus