Limits...
Y-chromosome E haplogroups: their distribution and implication to the origin of Afro-Asiatic languages and pastoralism.

Gebremeskel EI, Ibrahim ME - Eur. J. Hum. Genet. (2014)

Bottom Line: Genetic studies also indicate that populations from the region often contain, but not exclusively, representatives of the more basal clades of mitochondrial and Y-chromosome phylogenies.The combined analysis of 17 bi-allelic markers in 1214 Y chromosomes together with cultural background of 49 populations displayed in various metrics: network, multidimensional scaling, principal component analysis and neighbor-joining plots, indicate a major contribution of East African populations to the foundation of the macrohaplogroup, suggesting a diversification that predates the appearance of some cultural traits and the subsequent expansion that is more associated with the cultural and linguistic diversity witnessed today.The proto-Afro-Asiatic group carrying the E-P2 mutation may have appeared at this point in time and subsequently gave rise to the different major population groups including current speakers of the Afro-Asiatic languages and pastoralist populations.

View Article: PubMed Central - PubMed

Affiliation: 1] Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan [2] Department of Biology, Eritrea Institute of Technology, Mai-Nefhi, Eritrea.

ABSTRACT
Archeological and paleontological evidences point to East Africa as the likely area of early evolution of modern humans. Genetic studies also indicate that populations from the region often contain, but not exclusively, representatives of the more basal clades of mitochondrial and Y-chromosome phylogenies. Most Y-chromosome haplogroup diversity in Africa, however, is present within macrohaplogroup E that seem to have appeared 21 000-32 000 YBP somewhere between the Red Sea and Lake Chad. The combined analysis of 17 bi-allelic markers in 1214 Y chromosomes together with cultural background of 49 populations displayed in various metrics: network, multidimensional scaling, principal component analysis and neighbor-joining plots, indicate a major contribution of East African populations to the foundation of the macrohaplogroup, suggesting a diversification that predates the appearance of some cultural traits and the subsequent expansion that is more associated with the cultural and linguistic diversity witnessed today. The proto-Afro-Asiatic group carrying the E-P2 mutation may have appeared at this point in time and subsequently gave rise to the different major population groups including current speakers of the Afro-Asiatic languages and pastoralist populations.

Show MeSH
MDS plot based on the FST values generated from Arlequin 3.11 and using Rho similarity measures and with stress value of 0.07101. Populations' descriptions are given in Supplementary Table S1.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4231410&req=5

fig3: MDS plot based on the FST values generated from Arlequin 3.11 and using Rho similarity measures and with stress value of 0.07101. Populations' descriptions are given in Supplementary Table S1.

Mentions: The MDS and the PCA plots (Figure 3 and Supplementary Figure S2, respectively) generated from the E haplogroup frequency data portrayed similar pattern that complement the network result. Generally four main clusters can be identified from the MDS and PCA plots. In the MDS plot, one of the main clusters (grey shaded) constitutes almost all Eastern Africans including most Eritrean and Sudanese populations. The Saho and Afar populations of Eritrea tend to cluster with the Near Eastern or Arabian populations (brown shaded). The West and Southern African populations (blue shaded) form the third cluster, while North African populations forming the fourth cluster (green shaded). Interestingly, populations from Egypt, Tunisia and Ethiopia (Ethiopian Jews) assumed an intermediate position between the East African and Near Eastern clusters. The PCA (Supplementary Figure S2) also gave the same result clustering the majority of East Africans (grey shaded) in the first component and North Africans (brown shaded) separated from Middle East populations (blue shaded) in the second component. The first two components account 83% of the variations observed.


Y-chromosome E haplogroups: their distribution and implication to the origin of Afro-Asiatic languages and pastoralism.

Gebremeskel EI, Ibrahim ME - Eur. J. Hum. Genet. (2014)

MDS plot based on the FST values generated from Arlequin 3.11 and using Rho similarity measures and with stress value of 0.07101. Populations' descriptions are given in Supplementary Table S1.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4231410&req=5

fig3: MDS plot based on the FST values generated from Arlequin 3.11 and using Rho similarity measures and with stress value of 0.07101. Populations' descriptions are given in Supplementary Table S1.
Mentions: The MDS and the PCA plots (Figure 3 and Supplementary Figure S2, respectively) generated from the E haplogroup frequency data portrayed similar pattern that complement the network result. Generally four main clusters can be identified from the MDS and PCA plots. In the MDS plot, one of the main clusters (grey shaded) constitutes almost all Eastern Africans including most Eritrean and Sudanese populations. The Saho and Afar populations of Eritrea tend to cluster with the Near Eastern or Arabian populations (brown shaded). The West and Southern African populations (blue shaded) form the third cluster, while North African populations forming the fourth cluster (green shaded). Interestingly, populations from Egypt, Tunisia and Ethiopia (Ethiopian Jews) assumed an intermediate position between the East African and Near Eastern clusters. The PCA (Supplementary Figure S2) also gave the same result clustering the majority of East Africans (grey shaded) in the first component and North Africans (brown shaded) separated from Middle East populations (blue shaded) in the second component. The first two components account 83% of the variations observed.

Bottom Line: Genetic studies also indicate that populations from the region often contain, but not exclusively, representatives of the more basal clades of mitochondrial and Y-chromosome phylogenies.The combined analysis of 17 bi-allelic markers in 1214 Y chromosomes together with cultural background of 49 populations displayed in various metrics: network, multidimensional scaling, principal component analysis and neighbor-joining plots, indicate a major contribution of East African populations to the foundation of the macrohaplogroup, suggesting a diversification that predates the appearance of some cultural traits and the subsequent expansion that is more associated with the cultural and linguistic diversity witnessed today.The proto-Afro-Asiatic group carrying the E-P2 mutation may have appeared at this point in time and subsequently gave rise to the different major population groups including current speakers of the Afro-Asiatic languages and pastoralist populations.

View Article: PubMed Central - PubMed

Affiliation: 1] Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan [2] Department of Biology, Eritrea Institute of Technology, Mai-Nefhi, Eritrea.

ABSTRACT
Archeological and paleontological evidences point to East Africa as the likely area of early evolution of modern humans. Genetic studies also indicate that populations from the region often contain, but not exclusively, representatives of the more basal clades of mitochondrial and Y-chromosome phylogenies. Most Y-chromosome haplogroup diversity in Africa, however, is present within macrohaplogroup E that seem to have appeared 21 000-32 000 YBP somewhere between the Red Sea and Lake Chad. The combined analysis of 17 bi-allelic markers in 1214 Y chromosomes together with cultural background of 49 populations displayed in various metrics: network, multidimensional scaling, principal component analysis and neighbor-joining plots, indicate a major contribution of East African populations to the foundation of the macrohaplogroup, suggesting a diversification that predates the appearance of some cultural traits and the subsequent expansion that is more associated with the cultural and linguistic diversity witnessed today. The proto-Afro-Asiatic group carrying the E-P2 mutation may have appeared at this point in time and subsequently gave rise to the different major population groups including current speakers of the Afro-Asiatic languages and pastoralist populations.

Show MeSH