Limits...
TBL2 is a novel PERK-binding protein that modulates stress-signaling and cell survival during endoplasmic reticulum stress.

Tsukumo Y, Tsukahara S, Furuno A, Iemura S, Natsume T, Tomida A - PLoS ONE (2014)

Bottom Line: Under ER stress, PKR-like ER-resident kinase (PERK) phosphorylates translation initiation factor eIF2α, resulting in repression of global protein synthesis and concomitant upregulation of the translation of specific mRNAs such as activating transcription factor 4 (ATF4).We found that TBL2 is an ER-localized type-I transmembrane protein and preferentially binds to the phosphorylated form of PERK, but not another eIF2α kinase GCN2 or ER-resident kinase IRE1, under ER stress.Thus, TBL2 serves as a potential regulator of the PERK pathway.

View Article: PubMed Central - PubMed

Affiliation: Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan.

ABSTRACT
Under ER stress, PKR-like ER-resident kinase (PERK) phosphorylates translation initiation factor eIF2α, resulting in repression of global protein synthesis and concomitant upregulation of the translation of specific mRNAs such as activating transcription factor 4 (ATF4). This PERK function is important for cell survival under ER stress and poor nutrient conditions. However, mechanisms of the PERK signaling pathway are not thoroughly understood. Here we identify transducin (beta)-like 2 (TBL2) as a novel PERK-binding protein. We found that TBL2 is an ER-localized type-I transmembrane protein and preferentially binds to the phosphorylated form of PERK, but not another eIF2α kinase GCN2 or ER-resident kinase IRE1, under ER stress. Immunoprecipitation analysis using various deletion mutants revealed that TBL2 interacts with PERK via the N-terminus proximal region and also associates with eIF2α via the WD40 domain. In addition, TBL2 knockdown can lead to impaired ATF4 induction under ER stress or poor nutrient conditions such as glucose and oxygen deprivation. Consistently, TBL2 knockdown rendered cells vulnerable to stresses similarly to PERK knockdown. Thus, TBL2 serves as a potential regulator of the PERK pathway.

Show MeSH

Related in: MedlinePlus

Preferential binding of TBL2 to phospho-PERK.(A) 293T cells were transiently co-transfected with pTBL2 (V5-tag) and either pFLAG-PERK, pFLAG-PERK(K621A) or pFLAG-IRE1 and then were treated with 300 nM thapsigargin (Tg) for 2 h. The cell lysates were immunoprecipitated with anti-V5 antibody and immunoblotted with anti-FLAG or anti-V5 antibody. (B) 293T cells were transiently transfected with pFLAG-TBL2 and then were treated with 300 nM thapsigargin (Tg), 4 µg/ml tunicamycin (Tu) or 10 mM 2-deoxyglucose (2DG) for 2 h. Endogenous PERK protein was detected with anti-PERK or anti–phospho-PERK antibody. (C) 293T cells were transiently transfected with pFLAG-TBL2 and then were treated with the indicated doses of hydrogen peroxide (H2O2) for 4 hour. After immunoprecipitation with anti-FLAG antibody-conjugated beads, each protein was immunoblotted with the indicated antibody. (D) 786-O, 293 and 293T cells were transiently transfected with pFLAG-TBL2 and then were treated with 300 nM thapsigargin (Tg) for 1 hour. After immunoprecipitation with anti-FLAG antibody-conjugated beads, each protein was immunoblotted with the indicated antibody.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4231078&req=5

pone-0112761-g003: Preferential binding of TBL2 to phospho-PERK.(A) 293T cells were transiently co-transfected with pTBL2 (V5-tag) and either pFLAG-PERK, pFLAG-PERK(K621A) or pFLAG-IRE1 and then were treated with 300 nM thapsigargin (Tg) for 2 h. The cell lysates were immunoprecipitated with anti-V5 antibody and immunoblotted with anti-FLAG or anti-V5 antibody. (B) 293T cells were transiently transfected with pFLAG-TBL2 and then were treated with 300 nM thapsigargin (Tg), 4 µg/ml tunicamycin (Tu) or 10 mM 2-deoxyglucose (2DG) for 2 h. Endogenous PERK protein was detected with anti-PERK or anti–phospho-PERK antibody. (C) 293T cells were transiently transfected with pFLAG-TBL2 and then were treated with the indicated doses of hydrogen peroxide (H2O2) for 4 hour. After immunoprecipitation with anti-FLAG antibody-conjugated beads, each protein was immunoblotted with the indicated antibody. (D) 786-O, 293 and 293T cells were transiently transfected with pFLAG-TBL2 and then were treated with 300 nM thapsigargin (Tg) for 1 hour. After immunoprecipitation with anti-FLAG antibody-conjugated beads, each protein was immunoblotted with the indicated antibody.

Mentions: As seen in Figure 2, the electrophoretic mobility of the coprecipitated PERK protein corresponded with its autophosphorylated form. To verify whether TBL2 preferentially interacted with phospho-PERK, we investigated the interaction with the PERK kinase-dead form K621A (PERK-KD) or another type-I ER transmembrane kinase, IRE1, which is another important sensor of the UPR [1], [2]. As shown in Figure 3A (right panel), immunoprecipitation showed that PERK was dominantly detected in thapsigargin-dependent manner while PERK-KD or IRE1 was not or only faintly detected. Moreover, the interaction with phospho-PERK was confirmed using phospho-specific antibody (Figure 3B). The interaction was also induced by several kinds of ER stress-inducing agents including thapsigargin, tunicamycin, 2-deoxy-glucose, hydrogen peroxide and observed in several cell lines (Figure 3B–D). Thus, TBL2 specifically interacted with phospho-PERK in response to ER stress.


TBL2 is a novel PERK-binding protein that modulates stress-signaling and cell survival during endoplasmic reticulum stress.

Tsukumo Y, Tsukahara S, Furuno A, Iemura S, Natsume T, Tomida A - PLoS ONE (2014)

Preferential binding of TBL2 to phospho-PERK.(A) 293T cells were transiently co-transfected with pTBL2 (V5-tag) and either pFLAG-PERK, pFLAG-PERK(K621A) or pFLAG-IRE1 and then were treated with 300 nM thapsigargin (Tg) for 2 h. The cell lysates were immunoprecipitated with anti-V5 antibody and immunoblotted with anti-FLAG or anti-V5 antibody. (B) 293T cells were transiently transfected with pFLAG-TBL2 and then were treated with 300 nM thapsigargin (Tg), 4 µg/ml tunicamycin (Tu) or 10 mM 2-deoxyglucose (2DG) for 2 h. Endogenous PERK protein was detected with anti-PERK or anti–phospho-PERK antibody. (C) 293T cells were transiently transfected with pFLAG-TBL2 and then were treated with the indicated doses of hydrogen peroxide (H2O2) for 4 hour. After immunoprecipitation with anti-FLAG antibody-conjugated beads, each protein was immunoblotted with the indicated antibody. (D) 786-O, 293 and 293T cells were transiently transfected with pFLAG-TBL2 and then were treated with 300 nM thapsigargin (Tg) for 1 hour. After immunoprecipitation with anti-FLAG antibody-conjugated beads, each protein was immunoblotted with the indicated antibody.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4231078&req=5

pone-0112761-g003: Preferential binding of TBL2 to phospho-PERK.(A) 293T cells were transiently co-transfected with pTBL2 (V5-tag) and either pFLAG-PERK, pFLAG-PERK(K621A) or pFLAG-IRE1 and then were treated with 300 nM thapsigargin (Tg) for 2 h. The cell lysates were immunoprecipitated with anti-V5 antibody and immunoblotted with anti-FLAG or anti-V5 antibody. (B) 293T cells were transiently transfected with pFLAG-TBL2 and then were treated with 300 nM thapsigargin (Tg), 4 µg/ml tunicamycin (Tu) or 10 mM 2-deoxyglucose (2DG) for 2 h. Endogenous PERK protein was detected with anti-PERK or anti–phospho-PERK antibody. (C) 293T cells were transiently transfected with pFLAG-TBL2 and then were treated with the indicated doses of hydrogen peroxide (H2O2) for 4 hour. After immunoprecipitation with anti-FLAG antibody-conjugated beads, each protein was immunoblotted with the indicated antibody. (D) 786-O, 293 and 293T cells were transiently transfected with pFLAG-TBL2 and then were treated with 300 nM thapsigargin (Tg) for 1 hour. After immunoprecipitation with anti-FLAG antibody-conjugated beads, each protein was immunoblotted with the indicated antibody.
Mentions: As seen in Figure 2, the electrophoretic mobility of the coprecipitated PERK protein corresponded with its autophosphorylated form. To verify whether TBL2 preferentially interacted with phospho-PERK, we investigated the interaction with the PERK kinase-dead form K621A (PERK-KD) or another type-I ER transmembrane kinase, IRE1, which is another important sensor of the UPR [1], [2]. As shown in Figure 3A (right panel), immunoprecipitation showed that PERK was dominantly detected in thapsigargin-dependent manner while PERK-KD or IRE1 was not or only faintly detected. Moreover, the interaction with phospho-PERK was confirmed using phospho-specific antibody (Figure 3B). The interaction was also induced by several kinds of ER stress-inducing agents including thapsigargin, tunicamycin, 2-deoxy-glucose, hydrogen peroxide and observed in several cell lines (Figure 3B–D). Thus, TBL2 specifically interacted with phospho-PERK in response to ER stress.

Bottom Line: Under ER stress, PKR-like ER-resident kinase (PERK) phosphorylates translation initiation factor eIF2α, resulting in repression of global protein synthesis and concomitant upregulation of the translation of specific mRNAs such as activating transcription factor 4 (ATF4).We found that TBL2 is an ER-localized type-I transmembrane protein and preferentially binds to the phosphorylated form of PERK, but not another eIF2α kinase GCN2 or ER-resident kinase IRE1, under ER stress.Thus, TBL2 serves as a potential regulator of the PERK pathway.

View Article: PubMed Central - PubMed

Affiliation: Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan.

ABSTRACT
Under ER stress, PKR-like ER-resident kinase (PERK) phosphorylates translation initiation factor eIF2α, resulting in repression of global protein synthesis and concomitant upregulation of the translation of specific mRNAs such as activating transcription factor 4 (ATF4). This PERK function is important for cell survival under ER stress and poor nutrient conditions. However, mechanisms of the PERK signaling pathway are not thoroughly understood. Here we identify transducin (beta)-like 2 (TBL2) as a novel PERK-binding protein. We found that TBL2 is an ER-localized type-I transmembrane protein and preferentially binds to the phosphorylated form of PERK, but not another eIF2α kinase GCN2 or ER-resident kinase IRE1, under ER stress. Immunoprecipitation analysis using various deletion mutants revealed that TBL2 interacts with PERK via the N-terminus proximal region and also associates with eIF2α via the WD40 domain. In addition, TBL2 knockdown can lead to impaired ATF4 induction under ER stress or poor nutrient conditions such as glucose and oxygen deprivation. Consistently, TBL2 knockdown rendered cells vulnerable to stresses similarly to PERK knockdown. Thus, TBL2 serves as a potential regulator of the PERK pathway.

Show MeSH
Related in: MedlinePlus