Limits...
Synthesis of highly elastic biocompatible polyurethanes based on bio-based isosorbide and poly(tetramethylene glycol) and their properties.

Kim HJ, Kang MS, Knowles JC, Gong MS - J Biomater Appl (2014)

Bottom Line: The test results showed that the poly(tetramethylene glycol)/isosorbide-based elastomer exhibited not only excellent stress-strain properties but also superior resilience to the existing polyether-based polyurethane elastomers.Degradation tests performed at 37℃ in phosphate buffer solution showed a mass loss of 4-9% after 8 weeks, except for the polyurethane with the lowest isosorbide content, which showed an initial rapid weight loss.These polyurethanes offer significant promise due to soft, flexible and biocompatible properties for soft tissue augmentation and regeneration.

View Article: PubMed Central - PubMed

Affiliation: Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center, Dankook University Graduate School, Chungnam, South Korea.

Show MeSH

Related in: MedlinePlus

1H Nuclear magnetic resonance (NMR) spectra of PTMG, isosorbide, HDI, and polyurethane.HDI: hexamethylene diisocyanate; PTMG: poly(tetramethylene glycol).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2 - License 3
getmorefigures.php?uid=PMC4230967&req=5

fig3-0885328214533737: 1H Nuclear magnetic resonance (NMR) spectra of PTMG, isosorbide, HDI, and polyurethane.HDI: hexamethylene diisocyanate; PTMG: poly(tetramethylene glycol).

Mentions: Figure 3 displays the 1H NMR spectrum of the PUs, in which all proton signals of isosorbide, PTMG 2000, and the HDI segments were confirmed. The peaks occurring between 3.50 and 4.50 ppm were assigned to the bicyclic methylene protons of isosorbide. In addition, the peak at 8.07 ppm was assigned to the amine proton of the urethane N–H moiety. Signals occurring at 1.52, 1.64, and 3.18 ppm could be reasonably assigned to methylene protons of the HDI moiety.Figure 3.


Synthesis of highly elastic biocompatible polyurethanes based on bio-based isosorbide and poly(tetramethylene glycol) and their properties.

Kim HJ, Kang MS, Knowles JC, Gong MS - J Biomater Appl (2014)

1H Nuclear magnetic resonance (NMR) spectra of PTMG, isosorbide, HDI, and polyurethane.HDI: hexamethylene diisocyanate; PTMG: poly(tetramethylene glycol).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2 - License 3
Show All Figures
getmorefigures.php?uid=PMC4230967&req=5

fig3-0885328214533737: 1H Nuclear magnetic resonance (NMR) spectra of PTMG, isosorbide, HDI, and polyurethane.HDI: hexamethylene diisocyanate; PTMG: poly(tetramethylene glycol).
Mentions: Figure 3 displays the 1H NMR spectrum of the PUs, in which all proton signals of isosorbide, PTMG 2000, and the HDI segments were confirmed. The peaks occurring between 3.50 and 4.50 ppm were assigned to the bicyclic methylene protons of isosorbide. In addition, the peak at 8.07 ppm was assigned to the amine proton of the urethane N–H moiety. Signals occurring at 1.52, 1.64, and 3.18 ppm could be reasonably assigned to methylene protons of the HDI moiety.Figure 3.

Bottom Line: The test results showed that the poly(tetramethylene glycol)/isosorbide-based elastomer exhibited not only excellent stress-strain properties but also superior resilience to the existing polyether-based polyurethane elastomers.Degradation tests performed at 37℃ in phosphate buffer solution showed a mass loss of 4-9% after 8 weeks, except for the polyurethane with the lowest isosorbide content, which showed an initial rapid weight loss.These polyurethanes offer significant promise due to soft, flexible and biocompatible properties for soft tissue augmentation and regeneration.

View Article: PubMed Central - PubMed

Affiliation: Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center, Dankook University Graduate School, Chungnam, South Korea.

Show MeSH
Related in: MedlinePlus