Limits...
Prioritizing tiger conservation through landscape genetics and habitat linkages.

Yumnam B, Jhala YV, Qureshi Q, Maldonado JE, Gopal R, Saini S, Srinivas Y, Fleischer RC - PLoS ONE (2014)

Bottom Line: Spatially explicit tiger occupancy obtained from extensive landscape-scale surveys across 76,913 km(2) of forest habitat was found to be only 21,290 km(2).The results of our study highlight that many corridors may still be functional as there is evidence of contemporary migration.Conservation efforts should provide legal status to corridors, use smart green infrastructure to mitigate development impacts, and restore habitats where connectivity has been lost.

View Article: PubMed Central - PubMed

Affiliation: Wildlife Institute of India, Chandrabani, Dehradun 248001, India.

ABSTRACT
Even with global support for tiger (Panthera tigris) conservation their survival is threatened by poaching, habitat loss and isolation. Currently about 3,000 wild tigers persist in small fragmented populations within seven percent of their historic range. Identifying and securing habitat linkages that connect source populations for maintaining landscape-level gene flow is an important long-term conservation strategy for endangered carnivores. However, habitat corridors that link regional tiger populations are often lost to development projects due to lack of objective evidence on their importance. Here, we use individual based genetic analysis in combination with landscape permeability models to identify and prioritize movement corridors across seven tiger populations within the Central Indian Landscape. By using a panel of 11 microsatellites we identified 169 individual tigers from 587 scat and 17 tissue samples. We detected four genetic clusters within Central India with limited gene flow among three of them. Bayesian and likelihood analyses identified 17 tigers as having recent immigrant ancestry. Spatially explicit tiger occupancy obtained from extensive landscape-scale surveys across 76,913 km(2) of forest habitat was found to be only 21,290 km(2). After accounting for detection bias, the covariates that best explained tiger occupancy were large, remote, dense forest patches; large ungulate abundance, and low human footprint. We used tiger occupancy probability to parameterize habitat permeability for modeling habitat linkages using least-cost and circuit theory pathway analyses. Pairwise genetic differences (FST) between populations were better explained by modeled linkage costs (r>0.5, p<0.05) compared to Euclidean distances, which was in consonance with observed habitat fragmentation. The results of our study highlight that many corridors may still be functional as there is evidence of contemporary migration. Conservation efforts should provide legal status to corridors, use smart green infrastructure to mitigate development impacts, and restore habitats where connectivity has been lost.

No MeSH data available.


Related in: MedlinePlus

Study area map showing sampled sites, genotype locations and habitat connectivity.The study area of Central India spanning the states of Madhya Pradesh, Maharashtra and Chhattisgarh, showing tiger habitat (forest cover) coded with tiger occupancy probability, protected areas, human habitation (night lights), major roads and least-cost habitat corridors connecting tiger reserves. Individually genotyped tigers (n = 165) are shown as color coded dots at their sampled locations with their colors matching their genetically assigned population.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4230928&req=5

pone-0111207-g001: Study area map showing sampled sites, genotype locations and habitat connectivity.The study area of Central India spanning the states of Madhya Pradesh, Maharashtra and Chhattisgarh, showing tiger habitat (forest cover) coded with tiger occupancy probability, protected areas, human habitation (night lights), major roads and least-cost habitat corridors connecting tiger reserves. Individually genotyped tigers (n = 165) are shown as color coded dots at their sampled locations with their colors matching their genetically assigned population.

Mentions: The present study was carried out in the global priority tiger conservation landscape of Central India within the states of Madhya Pradesh, Maharashtra, and Chhattisgarh (Figure 1). A forested area of 76,913 km2 (20.1–23.5°N and 76.5–81.5°E) covering the seven tiger reserves of Melghat, Satpura, Pench, Kanha, Tadoba, Achanakmar, and Bandhavgarh along with their buffer zones, corridor habitats and adjoining forested habitats were sampled. Sampled sites covered different types of tiger habitats found in Central India ranging from the tropical moist-deciduous Sal (Shorea robusta) forests in Kanha and Bandhavgarh to tropical dry-deciduous teak (Tectona grandis) dominated forests in Pench, Tadoba and Melghat. The topography varied from about 200 meters above sea level (m a.s.l.) in the low-lying hills to the dadar plateaus and meadows in Kanha (500 m a.s.l.) and the rugged Satpura ranges (highest elevation 1,352 m a.s.l.). The rainfall, primarily restricted to the monsoon season (late June to September end) ranged between 1,000 to 2,200 mm per year. The large mammal fauna found in the region included tigers (Panthera tigris), leopards (P. pardus), sloth bears (Melursus ursinus), dholes (Cuon alpinus), gaurs (Bos gaurus), wild pigs (Sus scrofa), sambar deer (Rusa unicolor), chital deer (Axis axis), barking deer (Muntiacus muntjak), swamp deer (Rucervus duvaucelii) and nilgai antelopes (Boselaphus tragocamelus).


Prioritizing tiger conservation through landscape genetics and habitat linkages.

Yumnam B, Jhala YV, Qureshi Q, Maldonado JE, Gopal R, Saini S, Srinivas Y, Fleischer RC - PLoS ONE (2014)

Study area map showing sampled sites, genotype locations and habitat connectivity.The study area of Central India spanning the states of Madhya Pradesh, Maharashtra and Chhattisgarh, showing tiger habitat (forest cover) coded with tiger occupancy probability, protected areas, human habitation (night lights), major roads and least-cost habitat corridors connecting tiger reserves. Individually genotyped tigers (n = 165) are shown as color coded dots at their sampled locations with their colors matching their genetically assigned population.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4230928&req=5

pone-0111207-g001: Study area map showing sampled sites, genotype locations and habitat connectivity.The study area of Central India spanning the states of Madhya Pradesh, Maharashtra and Chhattisgarh, showing tiger habitat (forest cover) coded with tiger occupancy probability, protected areas, human habitation (night lights), major roads and least-cost habitat corridors connecting tiger reserves. Individually genotyped tigers (n = 165) are shown as color coded dots at their sampled locations with their colors matching their genetically assigned population.
Mentions: The present study was carried out in the global priority tiger conservation landscape of Central India within the states of Madhya Pradesh, Maharashtra, and Chhattisgarh (Figure 1). A forested area of 76,913 km2 (20.1–23.5°N and 76.5–81.5°E) covering the seven tiger reserves of Melghat, Satpura, Pench, Kanha, Tadoba, Achanakmar, and Bandhavgarh along with their buffer zones, corridor habitats and adjoining forested habitats were sampled. Sampled sites covered different types of tiger habitats found in Central India ranging from the tropical moist-deciduous Sal (Shorea robusta) forests in Kanha and Bandhavgarh to tropical dry-deciduous teak (Tectona grandis) dominated forests in Pench, Tadoba and Melghat. The topography varied from about 200 meters above sea level (m a.s.l.) in the low-lying hills to the dadar plateaus and meadows in Kanha (500 m a.s.l.) and the rugged Satpura ranges (highest elevation 1,352 m a.s.l.). The rainfall, primarily restricted to the monsoon season (late June to September end) ranged between 1,000 to 2,200 mm per year. The large mammal fauna found in the region included tigers (Panthera tigris), leopards (P. pardus), sloth bears (Melursus ursinus), dholes (Cuon alpinus), gaurs (Bos gaurus), wild pigs (Sus scrofa), sambar deer (Rusa unicolor), chital deer (Axis axis), barking deer (Muntiacus muntjak), swamp deer (Rucervus duvaucelii) and nilgai antelopes (Boselaphus tragocamelus).

Bottom Line: Spatially explicit tiger occupancy obtained from extensive landscape-scale surveys across 76,913 km(2) of forest habitat was found to be only 21,290 km(2).The results of our study highlight that many corridors may still be functional as there is evidence of contemporary migration.Conservation efforts should provide legal status to corridors, use smart green infrastructure to mitigate development impacts, and restore habitats where connectivity has been lost.

View Article: PubMed Central - PubMed

Affiliation: Wildlife Institute of India, Chandrabani, Dehradun 248001, India.

ABSTRACT
Even with global support for tiger (Panthera tigris) conservation their survival is threatened by poaching, habitat loss and isolation. Currently about 3,000 wild tigers persist in small fragmented populations within seven percent of their historic range. Identifying and securing habitat linkages that connect source populations for maintaining landscape-level gene flow is an important long-term conservation strategy for endangered carnivores. However, habitat corridors that link regional tiger populations are often lost to development projects due to lack of objective evidence on their importance. Here, we use individual based genetic analysis in combination with landscape permeability models to identify and prioritize movement corridors across seven tiger populations within the Central Indian Landscape. By using a panel of 11 microsatellites we identified 169 individual tigers from 587 scat and 17 tissue samples. We detected four genetic clusters within Central India with limited gene flow among three of them. Bayesian and likelihood analyses identified 17 tigers as having recent immigrant ancestry. Spatially explicit tiger occupancy obtained from extensive landscape-scale surveys across 76,913 km(2) of forest habitat was found to be only 21,290 km(2). After accounting for detection bias, the covariates that best explained tiger occupancy were large, remote, dense forest patches; large ungulate abundance, and low human footprint. We used tiger occupancy probability to parameterize habitat permeability for modeling habitat linkages using least-cost and circuit theory pathway analyses. Pairwise genetic differences (FST) between populations were better explained by modeled linkage costs (r>0.5, p<0.05) compared to Euclidean distances, which was in consonance with observed habitat fragmentation. The results of our study highlight that many corridors may still be functional as there is evidence of contemporary migration. Conservation efforts should provide legal status to corridors, use smart green infrastructure to mitigate development impacts, and restore habitats where connectivity has been lost.

No MeSH data available.


Related in: MedlinePlus