Limits...
Co-production of bioethanol and probiotic yeast biomass from agricultural feedstock: application of the rural biorefinery concept.

Hull CM, Loveridge EJ, Donnison IS, Kelly DE, Kelly SL - AMB Express (2014)

Bottom Line: Maximum product yields for MYA-769 (39.18 [±2.42] mg ethanol mL(-1) and 4.96 [±0.15] g dry weight L(-1)) compared closely to those of Turbo (37.43 [±1.99] mg mL(-1) and 4.78 [±0.10] g L(-1), respectively).Co-production, marketing and/or on-site utilisation of probiotic yeast biomass as a direct-fed microbial to improve livestock health represents a novel and viable prospect for rural biorefineries.Given emergent evidence to suggest that dietary yeast supplementations might also mitigate ruminant enteric methane emissions, the administration of probiotic yeast biomass could also offer an economically feasible way of reducing atmospheric CH4.

View Article: PubMed Central - HTML - PubMed

Affiliation: Institute of Life Science, College of Medicine, Swansea University, Swansea SA2 8PP, Wales, UK.

ABSTRACT
Microbial biotechnology and biotransformations promise to diversify the scope of the biorefinery approach for the production of high-value products and biofuels from industrial, rural and municipal waste feedstocks. In addition to bio-based chemicals and metabolites, microbial biomass itself constitutes an obvious but overlooked by-product of existing biofermentation systems which warrants fuller attention. The probiotic yeast Saccharomyces boulardii is used to treat gastrointestinal disorders and marketed as a human health supplement. Despite its relatedness to S. cerevisiae that is employed widely in biotechnology, food and biofuel industries, the alternative applications of S. boulardii are not well studied. Using a biorefinery approach, we compared the bioethanol and biomass yields attainable from agriculturally-sourced grass juice using probiotic S. boulardii (strain MYA-769) and a commercial S. cerevisiae brewing strain (Turbo yeast). Maximum product yields for MYA-769 (39.18 [±2.42] mg ethanol mL(-1) and 4.96 [±0.15] g dry weight L(-1)) compared closely to those of Turbo (37.43 [±1.99] mg mL(-1) and 4.78 [±0.10] g L(-1), respectively). Co-production, marketing and/or on-site utilisation of probiotic yeast biomass as a direct-fed microbial to improve livestock health represents a novel and viable prospect for rural biorefineries. Given emergent evidence to suggest that dietary yeast supplementations might also mitigate ruminant enteric methane emissions, the administration of probiotic yeast biomass could also offer an economically feasible way of reducing atmospheric CH4.

No MeSH data available.


Related in: MedlinePlus

Cholesterol assimilation experiments. Overlay of GC-MS sterol chromatograms for A) turbo yeast (unbroken trace) and B) MYA-796 (broken trace) grown on glcYM+chol. The diagnostic fragmentation spectrum for cholesterol is shown (C). Note the increased abundance of minor sterol intermediates (bracketed arrow) relative to cultures grown on GJ + tfosEp and YPD media.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4230830&req=5

Figure 5: Cholesterol assimilation experiments. Overlay of GC-MS sterol chromatograms for A) turbo yeast (unbroken trace) and B) MYA-796 (broken trace) grown on glcYM+chol. The diagnostic fragmentation spectrum for cholesterol is shown (C). Note the increased abundance of minor sterol intermediates (bracketed arrow) relative to cultures grown on GJ + tfosEp and YPD media.

Mentions: Results from cholesterol uptake experiments (Table 2 and Figures 4 and 5) indicate that, under oxygen-limited conditions and at a growth temperature compatible with that of the human body (37°C) MYA-769 assimilated more cholesterol than Turbo (Table 2 and Figure 5).


Co-production of bioethanol and probiotic yeast biomass from agricultural feedstock: application of the rural biorefinery concept.

Hull CM, Loveridge EJ, Donnison IS, Kelly DE, Kelly SL - AMB Express (2014)

Cholesterol assimilation experiments. Overlay of GC-MS sterol chromatograms for A) turbo yeast (unbroken trace) and B) MYA-796 (broken trace) grown on glcYM+chol. The diagnostic fragmentation spectrum for cholesterol is shown (C). Note the increased abundance of minor sterol intermediates (bracketed arrow) relative to cultures grown on GJ + tfosEp and YPD media.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4230830&req=5

Figure 5: Cholesterol assimilation experiments. Overlay of GC-MS sterol chromatograms for A) turbo yeast (unbroken trace) and B) MYA-796 (broken trace) grown on glcYM+chol. The diagnostic fragmentation spectrum for cholesterol is shown (C). Note the increased abundance of minor sterol intermediates (bracketed arrow) relative to cultures grown on GJ + tfosEp and YPD media.
Mentions: Results from cholesterol uptake experiments (Table 2 and Figures 4 and 5) indicate that, under oxygen-limited conditions and at a growth temperature compatible with that of the human body (37°C) MYA-769 assimilated more cholesterol than Turbo (Table 2 and Figure 5).

Bottom Line: Maximum product yields for MYA-769 (39.18 [±2.42] mg ethanol mL(-1) and 4.96 [±0.15] g dry weight L(-1)) compared closely to those of Turbo (37.43 [±1.99] mg mL(-1) and 4.78 [±0.10] g L(-1), respectively).Co-production, marketing and/or on-site utilisation of probiotic yeast biomass as a direct-fed microbial to improve livestock health represents a novel and viable prospect for rural biorefineries.Given emergent evidence to suggest that dietary yeast supplementations might also mitigate ruminant enteric methane emissions, the administration of probiotic yeast biomass could also offer an economically feasible way of reducing atmospheric CH4.

View Article: PubMed Central - HTML - PubMed

Affiliation: Institute of Life Science, College of Medicine, Swansea University, Swansea SA2 8PP, Wales, UK.

ABSTRACT
Microbial biotechnology and biotransformations promise to diversify the scope of the biorefinery approach for the production of high-value products and biofuels from industrial, rural and municipal waste feedstocks. In addition to bio-based chemicals and metabolites, microbial biomass itself constitutes an obvious but overlooked by-product of existing biofermentation systems which warrants fuller attention. The probiotic yeast Saccharomyces boulardii is used to treat gastrointestinal disorders and marketed as a human health supplement. Despite its relatedness to S. cerevisiae that is employed widely in biotechnology, food and biofuel industries, the alternative applications of S. boulardii are not well studied. Using a biorefinery approach, we compared the bioethanol and biomass yields attainable from agriculturally-sourced grass juice using probiotic S. boulardii (strain MYA-769) and a commercial S. cerevisiae brewing strain (Turbo yeast). Maximum product yields for MYA-769 (39.18 [±2.42] mg ethanol mL(-1) and 4.96 [±0.15] g dry weight L(-1)) compared closely to those of Turbo (37.43 [±1.99] mg mL(-1) and 4.78 [±0.10] g L(-1), respectively). Co-production, marketing and/or on-site utilisation of probiotic yeast biomass as a direct-fed microbial to improve livestock health represents a novel and viable prospect for rural biorefineries. Given emergent evidence to suggest that dietary yeast supplementations might also mitigate ruminant enteric methane emissions, the administration of probiotic yeast biomass could also offer an economically feasible way of reducing atmospheric CH4.

No MeSH data available.


Related in: MedlinePlus