Limits...
Co-production of bioethanol and probiotic yeast biomass from agricultural feedstock: application of the rural biorefinery concept.

Hull CM, Loveridge EJ, Donnison IS, Kelly DE, Kelly SL - AMB Express (2014)

Bottom Line: Maximum product yields for MYA-769 (39.18 [±2.42] mg ethanol mL(-1) and 4.96 [±0.15] g dry weight L(-1)) compared closely to those of Turbo (37.43 [±1.99] mg mL(-1) and 4.78 [±0.10] g L(-1), respectively).Co-production, marketing and/or on-site utilisation of probiotic yeast biomass as a direct-fed microbial to improve livestock health represents a novel and viable prospect for rural biorefineries.Given emergent evidence to suggest that dietary yeast supplementations might also mitigate ruminant enteric methane emissions, the administration of probiotic yeast biomass could also offer an economically feasible way of reducing atmospheric CH4.

View Article: PubMed Central - HTML - PubMed

Affiliation: Institute of Life Science, College of Medicine, Swansea University, Swansea SA2 8PP, Wales, UK.

ABSTRACT
Microbial biotechnology and biotransformations promise to diversify the scope of the biorefinery approach for the production of high-value products and biofuels from industrial, rural and municipal waste feedstocks. In addition to bio-based chemicals and metabolites, microbial biomass itself constitutes an obvious but overlooked by-product of existing biofermentation systems which warrants fuller attention. The probiotic yeast Saccharomyces boulardii is used to treat gastrointestinal disorders and marketed as a human health supplement. Despite its relatedness to S. cerevisiae that is employed widely in biotechnology, food and biofuel industries, the alternative applications of S. boulardii are not well studied. Using a biorefinery approach, we compared the bioethanol and biomass yields attainable from agriculturally-sourced grass juice using probiotic S. boulardii (strain MYA-769) and a commercial S. cerevisiae brewing strain (Turbo yeast). Maximum product yields for MYA-769 (39.18 [±2.42] mg ethanol mL(-1) and 4.96 [±0.15] g dry weight L(-1)) compared closely to those of Turbo (37.43 [±1.99] mg mL(-1) and 4.78 [±0.10] g L(-1), respectively). Co-production, marketing and/or on-site utilisation of probiotic yeast biomass as a direct-fed microbial to improve livestock health represents a novel and viable prospect for rural biorefineries. Given emergent evidence to suggest that dietary yeast supplementations might also mitigate ruminant enteric methane emissions, the administration of probiotic yeast biomass could also offer an economically feasible way of reducing atmospheric CH4.

No MeSH data available.


Related in: MedlinePlus

Sterol composition. Overlay of GC-MS sterol chromatograms for turbo yeast (unbroken trace) and MYA-796 (broken trace) grown on GJ + tfosEp. Diagnostic fragmentation spectra for 1) zymosterol, 2) ergosterol and 3) lanosterol are shown; note the presence of minor sterol intermediates (retention times 31.5-34.5 min and 36.5 min).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4230830&req=5

Figure 4: Sterol composition. Overlay of GC-MS sterol chromatograms for turbo yeast (unbroken trace) and MYA-796 (broken trace) grown on GJ + tfosEp. Diagnostic fragmentation spectra for 1) zymosterol, 2) ergosterol and 3) lanosterol are shown; note the presence of minor sterol intermediates (retention times 31.5-34.5 min and 36.5 min).

Mentions: Results from cholesterol uptake experiments (Table 2 and Figures 4 and 5) indicate that, under oxygen-limited conditions and at a growth temperature compatible with that of the human body (37°C) MYA-769 assimilated more cholesterol than Turbo (Table 2 and Figure 5).


Co-production of bioethanol and probiotic yeast biomass from agricultural feedstock: application of the rural biorefinery concept.

Hull CM, Loveridge EJ, Donnison IS, Kelly DE, Kelly SL - AMB Express (2014)

Sterol composition. Overlay of GC-MS sterol chromatograms for turbo yeast (unbroken trace) and MYA-796 (broken trace) grown on GJ + tfosEp. Diagnostic fragmentation spectra for 1) zymosterol, 2) ergosterol and 3) lanosterol are shown; note the presence of minor sterol intermediates (retention times 31.5-34.5 min and 36.5 min).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4230830&req=5

Figure 4: Sterol composition. Overlay of GC-MS sterol chromatograms for turbo yeast (unbroken trace) and MYA-796 (broken trace) grown on GJ + tfosEp. Diagnostic fragmentation spectra for 1) zymosterol, 2) ergosterol and 3) lanosterol are shown; note the presence of minor sterol intermediates (retention times 31.5-34.5 min and 36.5 min).
Mentions: Results from cholesterol uptake experiments (Table 2 and Figures 4 and 5) indicate that, under oxygen-limited conditions and at a growth temperature compatible with that of the human body (37°C) MYA-769 assimilated more cholesterol than Turbo (Table 2 and Figure 5).

Bottom Line: Maximum product yields for MYA-769 (39.18 [±2.42] mg ethanol mL(-1) and 4.96 [±0.15] g dry weight L(-1)) compared closely to those of Turbo (37.43 [±1.99] mg mL(-1) and 4.78 [±0.10] g L(-1), respectively).Co-production, marketing and/or on-site utilisation of probiotic yeast biomass as a direct-fed microbial to improve livestock health represents a novel and viable prospect for rural biorefineries.Given emergent evidence to suggest that dietary yeast supplementations might also mitigate ruminant enteric methane emissions, the administration of probiotic yeast biomass could also offer an economically feasible way of reducing atmospheric CH4.

View Article: PubMed Central - HTML - PubMed

Affiliation: Institute of Life Science, College of Medicine, Swansea University, Swansea SA2 8PP, Wales, UK.

ABSTRACT
Microbial biotechnology and biotransformations promise to diversify the scope of the biorefinery approach for the production of high-value products and biofuels from industrial, rural and municipal waste feedstocks. In addition to bio-based chemicals and metabolites, microbial biomass itself constitutes an obvious but overlooked by-product of existing biofermentation systems which warrants fuller attention. The probiotic yeast Saccharomyces boulardii is used to treat gastrointestinal disorders and marketed as a human health supplement. Despite its relatedness to S. cerevisiae that is employed widely in biotechnology, food and biofuel industries, the alternative applications of S. boulardii are not well studied. Using a biorefinery approach, we compared the bioethanol and biomass yields attainable from agriculturally-sourced grass juice using probiotic S. boulardii (strain MYA-769) and a commercial S. cerevisiae brewing strain (Turbo yeast). Maximum product yields for MYA-769 (39.18 [±2.42] mg ethanol mL(-1) and 4.96 [±0.15] g dry weight L(-1)) compared closely to those of Turbo (37.43 [±1.99] mg mL(-1) and 4.78 [±0.10] g L(-1), respectively). Co-production, marketing and/or on-site utilisation of probiotic yeast biomass as a direct-fed microbial to improve livestock health represents a novel and viable prospect for rural biorefineries. Given emergent evidence to suggest that dietary yeast supplementations might also mitigate ruminant enteric methane emissions, the administration of probiotic yeast biomass could also offer an economically feasible way of reducing atmospheric CH4.

No MeSH data available.


Related in: MedlinePlus