Limits...
Automatic protective ventilation using the ARDSNet protocol with the additional monitoring of electrical impedance tomography.

Pomprapa A, Schwaiberger D, Pickerodt P, Tjarks O, Lachmann B, Leonhardt S - Crit Care (2014)

Bottom Line: Automatic ventilation for patients with respiratory failure aims at reducing mortality and can minimize the workload of clinical staff, offer standardized continuous care, and ultimately save the overall cost of therapy.However, the automated protocol-driven ventilation was able to solve these problems.Additionally, regional ventilation was monitored by EIT for the evaluation of ventilation in real-time at bedside with one prominent case of pneumothorax.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Introduction: Automatic ventilation for patients with respiratory failure aims at reducing mortality and can minimize the workload of clinical staff, offer standardized continuous care, and ultimately save the overall cost of therapy. We therefore developed a prototype for closed-loop ventilation using acute respiratory distress syndrome network (ARDSNet) protocol, called autoARDSNet.

Methods: A protocol-driven ventilation using goal-oriented structural programming was implemented and used for 4 hours in seven pigs with lavage-induced acute respiratory distress syndrome (ARDS). Oxygenation, plateau pressure and pH goals were controlled during the automatic ventilation therapy using autoARDSNet. Monitoring included standard respiratory, arterial blood gas analysis and electrical impedance tomography (EIT) images. After 2-hour automatic ventilation, a disconnection of the animal from the ventilator was carried out for 10 seconds, simulating a frequent clinical scenario for routine clinical care or intra-hospital transport.

Results: This pilot study of seven pigs showed stable and robust response for oxygenation, plateau pressure and pH value using the automated system. A 10-second disconnection at the patient-ventilator interface caused impaired oxygenation and severe acidosis. However, the automated protocol-driven ventilation was able to solve these problems. Additionally, regional ventilation was monitored by EIT for the evaluation of ventilation in real-time at bedside with one prominent case of pneumothorax.

Conclusions: We implemented an automatic ventilation therapy using ARDSNet protocol with seven pigs. All positive outcomes were obtained by the closed-loop ventilation therapy, which can offer a continuous standard protocol-driven algorithm to ARDS subjects.

Show MeSH

Related in: MedlinePlus

Box-and-whisker plots for significant parameters during automatic ventilation therapy using the Acute Respiratory Distress Syndrome Network protocol. (a) Arterial oxygen saturation (SaO2). (b) Arterial oxygen tension/fraction of inspired oxygen (PaO2/FiO2). (c) Plateau pressure (Pplat). (d) pH. (e) Arterial carbon dioxide tension (PaCO2). (f) End-tidal carbon dioxide (etCO2).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4230798&req=5

Figure 9: Box-and-whisker plots for significant parameters during automatic ventilation therapy using the Acute Respiratory Distress Syndrome Network protocol. (a) Arterial oxygen saturation (SaO2). (b) Arterial oxygen tension/fraction of inspired oxygen (PaO2/FiO2). (c) Plateau pressure (Pplat). (d) pH. (e) Arterial carbon dioxide tension (PaCO2). (f) End-tidal carbon dioxide (etCO2).

Mentions: Box-and-whisker plots indicating the median (25th to 75th percentiles) are shown in Figure 9. These plots quantitatively describe various significant parameters for all seven pigs. The parameters are presented before lavage, after lavage and every 0.5 hours. During the process of lavage inducing ARDS, PaO2/FiO2 was evaluated by ABG. The median of PaO2/FiO2 was 70 mmHg and all cases were below 100 mmHg, representing severe ARDS. By regulating SaO2 at 88 to 95% in Figure 9a, PaO2/FiO2 values were improved for all cases by the protocol as shown in Figure 9b. At 2.5 hours, disconnection at the patient–ventilator interface was carried out and the median of PaO2/FiO2 was 94 mmHg. The 4 hours of ventilation using the protocol increased PaO2/FiO2 and the ARDS condition generally improved from severe ARDS to moderate ARDS based on the Berlin definition [15].


Automatic protective ventilation using the ARDSNet protocol with the additional monitoring of electrical impedance tomography.

Pomprapa A, Schwaiberger D, Pickerodt P, Tjarks O, Lachmann B, Leonhardt S - Crit Care (2014)

Box-and-whisker plots for significant parameters during automatic ventilation therapy using the Acute Respiratory Distress Syndrome Network protocol. (a) Arterial oxygen saturation (SaO2). (b) Arterial oxygen tension/fraction of inspired oxygen (PaO2/FiO2). (c) Plateau pressure (Pplat). (d) pH. (e) Arterial carbon dioxide tension (PaCO2). (f) End-tidal carbon dioxide (etCO2).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4230798&req=5

Figure 9: Box-and-whisker plots for significant parameters during automatic ventilation therapy using the Acute Respiratory Distress Syndrome Network protocol. (a) Arterial oxygen saturation (SaO2). (b) Arterial oxygen tension/fraction of inspired oxygen (PaO2/FiO2). (c) Plateau pressure (Pplat). (d) pH. (e) Arterial carbon dioxide tension (PaCO2). (f) End-tidal carbon dioxide (etCO2).
Mentions: Box-and-whisker plots indicating the median (25th to 75th percentiles) are shown in Figure 9. These plots quantitatively describe various significant parameters for all seven pigs. The parameters are presented before lavage, after lavage and every 0.5 hours. During the process of lavage inducing ARDS, PaO2/FiO2 was evaluated by ABG. The median of PaO2/FiO2 was 70 mmHg and all cases were below 100 mmHg, representing severe ARDS. By regulating SaO2 at 88 to 95% in Figure 9a, PaO2/FiO2 values were improved for all cases by the protocol as shown in Figure 9b. At 2.5 hours, disconnection at the patient–ventilator interface was carried out and the median of PaO2/FiO2 was 94 mmHg. The 4 hours of ventilation using the protocol increased PaO2/FiO2 and the ARDS condition generally improved from severe ARDS to moderate ARDS based on the Berlin definition [15].

Bottom Line: Automatic ventilation for patients with respiratory failure aims at reducing mortality and can minimize the workload of clinical staff, offer standardized continuous care, and ultimately save the overall cost of therapy.However, the automated protocol-driven ventilation was able to solve these problems.Additionally, regional ventilation was monitored by EIT for the evaluation of ventilation in real-time at bedside with one prominent case of pneumothorax.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Introduction: Automatic ventilation for patients with respiratory failure aims at reducing mortality and can minimize the workload of clinical staff, offer standardized continuous care, and ultimately save the overall cost of therapy. We therefore developed a prototype for closed-loop ventilation using acute respiratory distress syndrome network (ARDSNet) protocol, called autoARDSNet.

Methods: A protocol-driven ventilation using goal-oriented structural programming was implemented and used for 4 hours in seven pigs with lavage-induced acute respiratory distress syndrome (ARDS). Oxygenation, plateau pressure and pH goals were controlled during the automatic ventilation therapy using autoARDSNet. Monitoring included standard respiratory, arterial blood gas analysis and electrical impedance tomography (EIT) images. After 2-hour automatic ventilation, a disconnection of the animal from the ventilator was carried out for 10 seconds, simulating a frequent clinical scenario for routine clinical care or intra-hospital transport.

Results: This pilot study of seven pigs showed stable and robust response for oxygenation, plateau pressure and pH value using the automated system. A 10-second disconnection at the patient-ventilator interface caused impaired oxygenation and severe acidosis. However, the automated protocol-driven ventilation was able to solve these problems. Additionally, regional ventilation was monitored by EIT for the evaluation of ventilation in real-time at bedside with one prominent case of pneumothorax.

Conclusions: We implemented an automatic ventilation therapy using ARDSNet protocol with seven pigs. All positive outcomes were obtained by the closed-loop ventilation therapy, which can offer a continuous standard protocol-driven algorithm to ARDS subjects.

Show MeSH
Related in: MedlinePlus