Limits...
Automatic protective ventilation using the ARDSNet protocol with the additional monitoring of electrical impedance tomography.

Pomprapa A, Schwaiberger D, Pickerodt P, Tjarks O, Lachmann B, Leonhardt S - Crit Care (2014)

Bottom Line: Automatic ventilation for patients with respiratory failure aims at reducing mortality and can minimize the workload of clinical staff, offer standardized continuous care, and ultimately save the overall cost of therapy.However, the automated protocol-driven ventilation was able to solve these problems.Additionally, regional ventilation was monitored by EIT for the evaluation of ventilation in real-time at bedside with one prominent case of pneumothorax.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Introduction: Automatic ventilation for patients with respiratory failure aims at reducing mortality and can minimize the workload of clinical staff, offer standardized continuous care, and ultimately save the overall cost of therapy. We therefore developed a prototype for closed-loop ventilation using acute respiratory distress syndrome network (ARDSNet) protocol, called autoARDSNet.

Methods: A protocol-driven ventilation using goal-oriented structural programming was implemented and used for 4 hours in seven pigs with lavage-induced acute respiratory distress syndrome (ARDS). Oxygenation, plateau pressure and pH goals were controlled during the automatic ventilation therapy using autoARDSNet. Monitoring included standard respiratory, arterial blood gas analysis and electrical impedance tomography (EIT) images. After 2-hour automatic ventilation, a disconnection of the animal from the ventilator was carried out for 10 seconds, simulating a frequent clinical scenario for routine clinical care or intra-hospital transport.

Results: This pilot study of seven pigs showed stable and robust response for oxygenation, plateau pressure and pH value using the automated system. A 10-second disconnection at the patient-ventilator interface caused impaired oxygenation and severe acidosis. However, the automated protocol-driven ventilation was able to solve these problems. Additionally, regional ventilation was monitored by EIT for the evaluation of ventilation in real-time at bedside with one prominent case of pneumothorax.

Conclusions: We implemented an automatic ventilation therapy using ARDSNet protocol with seven pigs. All positive outcomes were obtained by the closed-loop ventilation therapy, which can offer a continuous standard protocol-driven algorithm to ARDS subjects.

Show MeSH

Related in: MedlinePlus

Control of the pH value for the 27 kg pig. Circles on the pH curve indicate manual arterial blood gas measurements. ARDSNet, Acute Respiratory Distress Syndrome Network; RR, respiratory rate.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4230798&req=5

Figure 4: Control of the pH value for the 27 kg pig. Circles on the pH curve indicate manual arterial blood gas measurements. ARDSNet, Acute Respiratory Distress Syndrome Network; RR, respiratory rate.

Mentions: Figure 4 shows the result of pH control for the 27 kg pig. The pH values were regularly measured every 30 minutes. At 0.5, 1 and 1.5 hours, the pH value was <7.30, and RR was increased by 5 bpm after entering the pH value into the system. At 2 and 2.5 hours, the pH goal was satisfied and RR remained unchanged. At 2.5 hours, ABG was measured before the 10-second disconnection at the patient–ventilator interface. At the next ABG (3 hours), the pH value falls below 7.15. RR was immediately set at 35 bpm to treat severe acidosis due to disconnection at the patient–ventilator interface. With the maximum limit of RR at 35 bpm, this resulted in an increase of the pH value to >7.15. At 3.5 and 4 hours, the pH value was 7.15 to 7.30 and RR should be increased. However, RR was already at its limit set at 35 bpm.


Automatic protective ventilation using the ARDSNet protocol with the additional monitoring of electrical impedance tomography.

Pomprapa A, Schwaiberger D, Pickerodt P, Tjarks O, Lachmann B, Leonhardt S - Crit Care (2014)

Control of the pH value for the 27 kg pig. Circles on the pH curve indicate manual arterial blood gas measurements. ARDSNet, Acute Respiratory Distress Syndrome Network; RR, respiratory rate.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4230798&req=5

Figure 4: Control of the pH value for the 27 kg pig. Circles on the pH curve indicate manual arterial blood gas measurements. ARDSNet, Acute Respiratory Distress Syndrome Network; RR, respiratory rate.
Mentions: Figure 4 shows the result of pH control for the 27 kg pig. The pH values were regularly measured every 30 minutes. At 0.5, 1 and 1.5 hours, the pH value was <7.30, and RR was increased by 5 bpm after entering the pH value into the system. At 2 and 2.5 hours, the pH goal was satisfied and RR remained unchanged. At 2.5 hours, ABG was measured before the 10-second disconnection at the patient–ventilator interface. At the next ABG (3 hours), the pH value falls below 7.15. RR was immediately set at 35 bpm to treat severe acidosis due to disconnection at the patient–ventilator interface. With the maximum limit of RR at 35 bpm, this resulted in an increase of the pH value to >7.15. At 3.5 and 4 hours, the pH value was 7.15 to 7.30 and RR should be increased. However, RR was already at its limit set at 35 bpm.

Bottom Line: Automatic ventilation for patients with respiratory failure aims at reducing mortality and can minimize the workload of clinical staff, offer standardized continuous care, and ultimately save the overall cost of therapy.However, the automated protocol-driven ventilation was able to solve these problems.Additionally, regional ventilation was monitored by EIT for the evaluation of ventilation in real-time at bedside with one prominent case of pneumothorax.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Introduction: Automatic ventilation for patients with respiratory failure aims at reducing mortality and can minimize the workload of clinical staff, offer standardized continuous care, and ultimately save the overall cost of therapy. We therefore developed a prototype for closed-loop ventilation using acute respiratory distress syndrome network (ARDSNet) protocol, called autoARDSNet.

Methods: A protocol-driven ventilation using goal-oriented structural programming was implemented and used for 4 hours in seven pigs with lavage-induced acute respiratory distress syndrome (ARDS). Oxygenation, plateau pressure and pH goals were controlled during the automatic ventilation therapy using autoARDSNet. Monitoring included standard respiratory, arterial blood gas analysis and electrical impedance tomography (EIT) images. After 2-hour automatic ventilation, a disconnection of the animal from the ventilator was carried out for 10 seconds, simulating a frequent clinical scenario for routine clinical care or intra-hospital transport.

Results: This pilot study of seven pigs showed stable and robust response for oxygenation, plateau pressure and pH value using the automated system. A 10-second disconnection at the patient-ventilator interface caused impaired oxygenation and severe acidosis. However, the automated protocol-driven ventilation was able to solve these problems. Additionally, regional ventilation was monitored by EIT for the evaluation of ventilation in real-time at bedside with one prominent case of pneumothorax.

Conclusions: We implemented an automatic ventilation therapy using ARDSNet protocol with seven pigs. All positive outcomes were obtained by the closed-loop ventilation therapy, which can offer a continuous standard protocol-driven algorithm to ARDS subjects.

Show MeSH
Related in: MedlinePlus