Limits...
Genome sequence and phenotypic analysis of a first German Francisella sp. isolate (W12-1067) not belonging to the species Francisella tularensis.

Rydzewski K, Schulz T, Brzuszkiewicz E, Holland G, Lück C, Fleischer J, Grunow R, Heuner K - BMC Microbiol. (2014)

Bottom Line: Isolate W12-1067 is closely related to the recently described F. guangzhouensis species and it replicates within eukaryotic host cells.Since W12-1067 exhibits a putative new type-VI secretion system and F. tularensis subsp. holarctica was found not to be the sole species in Germany, the new isolate is an interesting species to be analyzed in more detail.Further research is needed to investigate the epidemiology, ecology and pathogenicity of Francisella species present in Germany.

View Article: PubMed Central - HTML - PubMed

Affiliation: Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, Division 2 (ZBS 2), Robert Koch Institute, Nordufer 20, Berlin 13353, Germany. heunerk@rki.de.

ABSTRACT

Background: Francisella isolates from patients suffering from tularemia in Germany are generally strains of the species F. tularensis subsp. holarctica. To our knowledge, no other Francisella species are known for Germany. Recently, a new Francisella species could be isolated from a water reservoir of a cooling tower in Germany.

Results: We identified a Francisella sp. (isolate W12-1067) whose 16S rDNA is 99% identical to the respective nucleotide sequence of the recently published strain F. guangzhouensis. The overall sequence identity of the fopA, gyrA, rpoA, groEL, sdhA and dnaK genes is only 89%, indicating that strain W12-1067 is not identical to F. guangzhouensis. W12-1067 was isolated from a water reservoir of a cooling tower of a hospital in Germany. The growth optimum of the isolate is approximately 30°C, it can grow in the presence of 4-5% NaCl (halotolerant) and is able to grow without additional cysteine within the medium. The strain was able to replicate within a mouse-derived macrophage-like cell line. The whole genome of the strain was sequenced (~1.7 mbp, 32.2% G + C content) and the draft genome was annotated. Various virulence genes common to the genus Francisella are present, but the Francisella pathogenicity island (FPI) is missing. However, another putative type-VI secretion system is present within the genome of strain W12-1067.

Conclusions: Isolate W12-1067 is closely related to the recently described F. guangzhouensis species and it replicates within eukaryotic host cells. Since W12-1067 exhibits a putative new type-VI secretion system and F. tularensis subsp. holarctica was found not to be the sole species in Germany, the new isolate is an interesting species to be analyzed in more detail. Further research is needed to investigate the epidemiology, ecology and pathogenicity of Francisella species present in Germany.

Show MeSH

Related in: MedlinePlus

Phylogenetic tree analysis. (A) Phylogenetic tree analysis of different Francisella strains using 16S rDNA or (B) 6-loci concatenated DNA sequences. Name and function of genes used for the 6-loci concatenated sequences are given in Table 2. *, 16S rDNA sequences of different isolates of F. guangzhouensis published by [20]; #, Concatenated sequence of L. pneumophila Paris (Lpp) did not exhibit a fopA gene, because no homolog of this gene is present within the genome sequence. Fhol-OSU18, Ft. holartica strain OSU18; Ftul-SchuS4, Ft. tularensis strain SchuS4; Fmed-FSC147, F. mediasiatica strain FSC147, Fnov-U112, Ft. novicida strain U112; Fhis-3523, F. hispaniensis (Ft. novicida-like strain 3523); Fnoa-Toba04, F. noatunensis strain Toba04; Fphi-25015 and 25017, F. philomiragia strain ATCC 25015 and ATCC 25017; F-TX077308, Francisella isolate TX077308.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4230796&req=5

Figure 1: Phylogenetic tree analysis. (A) Phylogenetic tree analysis of different Francisella strains using 16S rDNA or (B) 6-loci concatenated DNA sequences. Name and function of genes used for the 6-loci concatenated sequences are given in Table 2. *, 16S rDNA sequences of different isolates of F. guangzhouensis published by [20]; #, Concatenated sequence of L. pneumophila Paris (Lpp) did not exhibit a fopA gene, because no homolog of this gene is present within the genome sequence. Fhol-OSU18, Ft. holartica strain OSU18; Ftul-SchuS4, Ft. tularensis strain SchuS4; Fmed-FSC147, F. mediasiatica strain FSC147, Fnov-U112, Ft. novicida strain U112; Fhis-3523, F. hispaniensis (Ft. novicida-like strain 3523); Fnoa-Toba04, F. noatunensis strain Toba04; Fphi-25015 and 25017, F. philomiragia strain ATCC 25015 and ATCC 25017; F-TX077308, Francisella isolate TX077308.

Mentions: First we performed 16S rDNA PCR and sequenced the PCR product. The phylogenetic analysis of the 16S rDNA revealed that isolate W12-1067 is a close representative of the recently identified new environmental Francisella species F. guangzhouensis[20]. The phylogenetic tree of 16S rDNA of different Francisella strains is given in Figure 1A, corroborating the close relationship of isolate W12-1067 with F. guangzhouensis and other Chinese cooling tower isolates of this species (99% identity). The other Francisella strains analyzed revealed DNA identities of 16S rDNA sequences of 94–95% with 16S rDNA of isolate W12-1067 and 83% identity with the 16S rRNA gene of L. pneumophila Paris.


Genome sequence and phenotypic analysis of a first German Francisella sp. isolate (W12-1067) not belonging to the species Francisella tularensis.

Rydzewski K, Schulz T, Brzuszkiewicz E, Holland G, Lück C, Fleischer J, Grunow R, Heuner K - BMC Microbiol. (2014)

Phylogenetic tree analysis. (A) Phylogenetic tree analysis of different Francisella strains using 16S rDNA or (B) 6-loci concatenated DNA sequences. Name and function of genes used for the 6-loci concatenated sequences are given in Table 2. *, 16S rDNA sequences of different isolates of F. guangzhouensis published by [20]; #, Concatenated sequence of L. pneumophila Paris (Lpp) did not exhibit a fopA gene, because no homolog of this gene is present within the genome sequence. Fhol-OSU18, Ft. holartica strain OSU18; Ftul-SchuS4, Ft. tularensis strain SchuS4; Fmed-FSC147, F. mediasiatica strain FSC147, Fnov-U112, Ft. novicida strain U112; Fhis-3523, F. hispaniensis (Ft. novicida-like strain 3523); Fnoa-Toba04, F. noatunensis strain Toba04; Fphi-25015 and 25017, F. philomiragia strain ATCC 25015 and ATCC 25017; F-TX077308, Francisella isolate TX077308.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4230796&req=5

Figure 1: Phylogenetic tree analysis. (A) Phylogenetic tree analysis of different Francisella strains using 16S rDNA or (B) 6-loci concatenated DNA sequences. Name and function of genes used for the 6-loci concatenated sequences are given in Table 2. *, 16S rDNA sequences of different isolates of F. guangzhouensis published by [20]; #, Concatenated sequence of L. pneumophila Paris (Lpp) did not exhibit a fopA gene, because no homolog of this gene is present within the genome sequence. Fhol-OSU18, Ft. holartica strain OSU18; Ftul-SchuS4, Ft. tularensis strain SchuS4; Fmed-FSC147, F. mediasiatica strain FSC147, Fnov-U112, Ft. novicida strain U112; Fhis-3523, F. hispaniensis (Ft. novicida-like strain 3523); Fnoa-Toba04, F. noatunensis strain Toba04; Fphi-25015 and 25017, F. philomiragia strain ATCC 25015 and ATCC 25017; F-TX077308, Francisella isolate TX077308.
Mentions: First we performed 16S rDNA PCR and sequenced the PCR product. The phylogenetic analysis of the 16S rDNA revealed that isolate W12-1067 is a close representative of the recently identified new environmental Francisella species F. guangzhouensis[20]. The phylogenetic tree of 16S rDNA of different Francisella strains is given in Figure 1A, corroborating the close relationship of isolate W12-1067 with F. guangzhouensis and other Chinese cooling tower isolates of this species (99% identity). The other Francisella strains analyzed revealed DNA identities of 16S rDNA sequences of 94–95% with 16S rDNA of isolate W12-1067 and 83% identity with the 16S rRNA gene of L. pneumophila Paris.

Bottom Line: Isolate W12-1067 is closely related to the recently described F. guangzhouensis species and it replicates within eukaryotic host cells.Since W12-1067 exhibits a putative new type-VI secretion system and F. tularensis subsp. holarctica was found not to be the sole species in Germany, the new isolate is an interesting species to be analyzed in more detail.Further research is needed to investigate the epidemiology, ecology and pathogenicity of Francisella species present in Germany.

View Article: PubMed Central - HTML - PubMed

Affiliation: Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, Division 2 (ZBS 2), Robert Koch Institute, Nordufer 20, Berlin 13353, Germany. heunerk@rki.de.

ABSTRACT

Background: Francisella isolates from patients suffering from tularemia in Germany are generally strains of the species F. tularensis subsp. holarctica. To our knowledge, no other Francisella species are known for Germany. Recently, a new Francisella species could be isolated from a water reservoir of a cooling tower in Germany.

Results: We identified a Francisella sp. (isolate W12-1067) whose 16S rDNA is 99% identical to the respective nucleotide sequence of the recently published strain F. guangzhouensis. The overall sequence identity of the fopA, gyrA, rpoA, groEL, sdhA and dnaK genes is only 89%, indicating that strain W12-1067 is not identical to F. guangzhouensis. W12-1067 was isolated from a water reservoir of a cooling tower of a hospital in Germany. The growth optimum of the isolate is approximately 30°C, it can grow in the presence of 4-5% NaCl (halotolerant) and is able to grow without additional cysteine within the medium. The strain was able to replicate within a mouse-derived macrophage-like cell line. The whole genome of the strain was sequenced (~1.7 mbp, 32.2% G + C content) and the draft genome was annotated. Various virulence genes common to the genus Francisella are present, but the Francisella pathogenicity island (FPI) is missing. However, another putative type-VI secretion system is present within the genome of strain W12-1067.

Conclusions: Isolate W12-1067 is closely related to the recently described F. guangzhouensis species and it replicates within eukaryotic host cells. Since W12-1067 exhibits a putative new type-VI secretion system and F. tularensis subsp. holarctica was found not to be the sole species in Germany, the new isolate is an interesting species to be analyzed in more detail. Further research is needed to investigate the epidemiology, ecology and pathogenicity of Francisella species present in Germany.

Show MeSH
Related in: MedlinePlus