Limits...
Targeted genome engineering in human induced pluripotent stem cells by penetrating TALENs.

Ru R, Yao Y, Yu S, Yin B, Xu W, Zhao S, Qin L, Chen X - Cell Regen (Lond) (2013)

Bottom Line: Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) have been successfully used to knock out endogenous genes in stem cell research.Hypothermic treatment greatly enhanced the TAT-TALEN-mediated gene disruption efficiency.This new technique may advance the clinical application of TALEN technology.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China.

ABSTRACT

Background: Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) have been successfully used to knock out endogenous genes in stem cell research. However, the deficiencies of current gene-based delivery systems may hamper the clinical application of these nucleases. A new delivery method that can improve the utility of these nucleases is needed.

Results: In this study, we utilized a cell-penetrating peptide-based system for ZFN and TALEN delivery. Functional TAT-ZFN and TAT-TALEN proteins were generated by fusing the cell-penetrating TAT peptide to ZFN and TALEN, respectively. However, TAT-ZFN was difficult to purify in quantities sufficient for analysis in cell culture. Purified TAT-TALEN was able to penetrate cells and disrupt the gene encoding endogenous human chemokine (C-C motif) receptor 5 (CCR5, a co-receptor for HIV-1 entry into cells). Hypothermic treatment greatly enhanced the TAT-TALEN-mediated gene disruption efficiency. A 5% modification rate was observed in human induced pluripotent stem cells (hiPSCs) treated with TAT-TALEN as measured by the Surveyor assay.

Conclusions: TAT-TALEN protein-mediated gene disruption was applicable in hiPSCs and represents a promising technique for gene knockout in stem cells. This new technique may advance the clinical application of TALEN technology.

No MeSH data available.


Related in: MedlinePlus

Proliferation of HeLa cells and iPSCs subjected to three consecutive treatments with various concentrations of TAT-TALEN proteins. Values are normalized to mock treated cells. Error bars, s.d. (n = 3).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4230761&req=5

Fig6: Proliferation of HeLa cells and iPSCs subjected to three consecutive treatments with various concentrations of TAT-TALEN proteins. Values are normalized to mock treated cells. Error bars, s.d. (n = 3).

Mentions: To examine the cytotoxicity of TAT-TALENs, the proliferation of HeLa cells and hiPSCs treated with TAT-TALENs was measured. We observed a decrease in the proliferation of each cell type after three consecutive treatments with TAT-TALENs (Figure 6). Cytotoxicity was also dose-dependent, suggesting that consecutive low doses might be required to minimize potential toxic effects.Figure 6


Targeted genome engineering in human induced pluripotent stem cells by penetrating TALENs.

Ru R, Yao Y, Yu S, Yin B, Xu W, Zhao S, Qin L, Chen X - Cell Regen (Lond) (2013)

Proliferation of HeLa cells and iPSCs subjected to three consecutive treatments with various concentrations of TAT-TALEN proteins. Values are normalized to mock treated cells. Error bars, s.d. (n = 3).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4230761&req=5

Fig6: Proliferation of HeLa cells and iPSCs subjected to three consecutive treatments with various concentrations of TAT-TALEN proteins. Values are normalized to mock treated cells. Error bars, s.d. (n = 3).
Mentions: To examine the cytotoxicity of TAT-TALENs, the proliferation of HeLa cells and hiPSCs treated with TAT-TALENs was measured. We observed a decrease in the proliferation of each cell type after three consecutive treatments with TAT-TALENs (Figure 6). Cytotoxicity was also dose-dependent, suggesting that consecutive low doses might be required to minimize potential toxic effects.Figure 6

Bottom Line: Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) have been successfully used to knock out endogenous genes in stem cell research.Hypothermic treatment greatly enhanced the TAT-TALEN-mediated gene disruption efficiency.This new technique may advance the clinical application of TALEN technology.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China.

ABSTRACT

Background: Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) have been successfully used to knock out endogenous genes in stem cell research. However, the deficiencies of current gene-based delivery systems may hamper the clinical application of these nucleases. A new delivery method that can improve the utility of these nucleases is needed.

Results: In this study, we utilized a cell-penetrating peptide-based system for ZFN and TALEN delivery. Functional TAT-ZFN and TAT-TALEN proteins were generated by fusing the cell-penetrating TAT peptide to ZFN and TALEN, respectively. However, TAT-ZFN was difficult to purify in quantities sufficient for analysis in cell culture. Purified TAT-TALEN was able to penetrate cells and disrupt the gene encoding endogenous human chemokine (C-C motif) receptor 5 (CCR5, a co-receptor for HIV-1 entry into cells). Hypothermic treatment greatly enhanced the TAT-TALEN-mediated gene disruption efficiency. A 5% modification rate was observed in human induced pluripotent stem cells (hiPSCs) treated with TAT-TALEN as measured by the Surveyor assay.

Conclusions: TAT-TALEN protein-mediated gene disruption was applicable in hiPSCs and represents a promising technique for gene knockout in stem cells. This new technique may advance the clinical application of TALEN technology.

No MeSH data available.


Related in: MedlinePlus