Limits...
Genome-wide association study for intramuscular fat deposition and composition in Nellore cattle.

Cesar AS, Regitano LC, Mourão GB, Tullio RR, Lanna DP, Nassu RT, Mudado MA, Oliveira PS, do Nascimento ML, Chaves AS, Alencar MM, Sonstegard TS, Garrick DJ, Reecy JM, Coutinho LL - BMC Genet. (2014)

Bottom Line: Human consumption of fat that contains high levels of monounsaturated fatty acids (MUFA) can reduce the concentration of undesirable cholesterol (LDL) in circulating blood.Twenty-three genomic regions (1-Mb SNP windows) associated with IMF deposition and FA composition that each explain ≥1% of the genetic variance were identified on chromosomes 2, 3, 6, 7, 8, 9, 10, 11, 12, 17, 26 and 27.The genomic regions and genes identified contribute to a better understanding of the genetic control of fatty acid deposition and can lead to DNA-based selection strategies to improve meat quality for human consumption.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Animal Science, University of São Paulo, Piracicaba SP 13418-900, Brazil. llcoutinho@usp.br.

ABSTRACT

Background: Meat from Bos taurus and Bos indicus breeds are an important source of nutrients for humans and intramuscular fat (IMF) influences its flavor, nutritional value and impacts human health. Human consumption of fat that contains high levels of monounsaturated fatty acids (MUFA) can reduce the concentration of undesirable cholesterol (LDL) in circulating blood. Different feeding practices and genetic variation within and between breeds influences the amount of IMF and fatty acid (FA) composition in meat. However, it is difficult and costly to determine fatty acid composition, which has precluded beef cattle breeding programs from selecting for a healthier fatty acid profile. In this study, we employed a high-density single nucleotide polymorphism (SNP) chip to genotype 386 Nellore steers, a Bos indicus breed and, a Bayesian approach to identify genomic regions and putative candidate genes that could be involved with deposition and composition of IMF.

Results: Twenty-three genomic regions (1-Mb SNP windows) associated with IMF deposition and FA composition that each explain ≥1% of the genetic variance were identified on chromosomes 2, 3, 6, 7, 8, 9, 10, 11, 12, 17, 26 and 27. Many of these regions were not previously detected in other breeds. The genes present in these regions were identified and some can help explain the genetic basis of deposition and composition of fat in cattle.

Conclusions: The genomic regions and genes identified contribute to a better understanding of the genetic control of fatty acid deposition and can lead to DNA-based selection strategies to improve meat quality for human consumption.

Show MeSH
Manhattan plot of the genome-wide association study result for C18:1 cis9 (oleic acid) in Nellore. The X-axis represents the chromosomes, and the Y-axis shows the proportion of genetic variance explained by SNP window from Bayes B analysis.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4230646&req=5

Figure 3: Manhattan plot of the genome-wide association study result for C18:1 cis9 (oleic acid) in Nellore. The X-axis represents the chromosomes, and the Y-axis shows the proportion of genetic variance explained by SNP window from Bayes B analysis.

Mentions: Ten genomic regions (1 Mb region) explained more than 1% of genotypic variation for monounsaturated fatty acids, which relates C14:1 cis-9, C16:1 cis-9, C18:1 cis-9, and C18:1 trans-16 (Table 3). These regions overlap with QTL reported for carcass weight, marbling score in Angus [30], docosahexaenoic acid content in Charolais x Holstein crossbred cattle [41] and palmitoleic acid in dairy cattle [42]. Manhattan plots of the proportion of genetic variance explained by each 1-Mb window (2,527 windows) across the 29 autosomes for the most important fatty acid for beef quality and human health: myristoleic acid (C14:1 cis-9), palmitoleic acid (C16:1 cis-9), and oleic acid (C18:1 cis-9) and are in Figures 1, 2 and 3, respectively.


Genome-wide association study for intramuscular fat deposition and composition in Nellore cattle.

Cesar AS, Regitano LC, Mourão GB, Tullio RR, Lanna DP, Nassu RT, Mudado MA, Oliveira PS, do Nascimento ML, Chaves AS, Alencar MM, Sonstegard TS, Garrick DJ, Reecy JM, Coutinho LL - BMC Genet. (2014)

Manhattan plot of the genome-wide association study result for C18:1 cis9 (oleic acid) in Nellore. The X-axis represents the chromosomes, and the Y-axis shows the proportion of genetic variance explained by SNP window from Bayes B analysis.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4230646&req=5

Figure 3: Manhattan plot of the genome-wide association study result for C18:1 cis9 (oleic acid) in Nellore. The X-axis represents the chromosomes, and the Y-axis shows the proportion of genetic variance explained by SNP window from Bayes B analysis.
Mentions: Ten genomic regions (1 Mb region) explained more than 1% of genotypic variation for monounsaturated fatty acids, which relates C14:1 cis-9, C16:1 cis-9, C18:1 cis-9, and C18:1 trans-16 (Table 3). These regions overlap with QTL reported for carcass weight, marbling score in Angus [30], docosahexaenoic acid content in Charolais x Holstein crossbred cattle [41] and palmitoleic acid in dairy cattle [42]. Manhattan plots of the proportion of genetic variance explained by each 1-Mb window (2,527 windows) across the 29 autosomes for the most important fatty acid for beef quality and human health: myristoleic acid (C14:1 cis-9), palmitoleic acid (C16:1 cis-9), and oleic acid (C18:1 cis-9) and are in Figures 1, 2 and 3, respectively.

Bottom Line: Human consumption of fat that contains high levels of monounsaturated fatty acids (MUFA) can reduce the concentration of undesirable cholesterol (LDL) in circulating blood.Twenty-three genomic regions (1-Mb SNP windows) associated with IMF deposition and FA composition that each explain ≥1% of the genetic variance were identified on chromosomes 2, 3, 6, 7, 8, 9, 10, 11, 12, 17, 26 and 27.The genomic regions and genes identified contribute to a better understanding of the genetic control of fatty acid deposition and can lead to DNA-based selection strategies to improve meat quality for human consumption.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Animal Science, University of São Paulo, Piracicaba SP 13418-900, Brazil. llcoutinho@usp.br.

ABSTRACT

Background: Meat from Bos taurus and Bos indicus breeds are an important source of nutrients for humans and intramuscular fat (IMF) influences its flavor, nutritional value and impacts human health. Human consumption of fat that contains high levels of monounsaturated fatty acids (MUFA) can reduce the concentration of undesirable cholesterol (LDL) in circulating blood. Different feeding practices and genetic variation within and between breeds influences the amount of IMF and fatty acid (FA) composition in meat. However, it is difficult and costly to determine fatty acid composition, which has precluded beef cattle breeding programs from selecting for a healthier fatty acid profile. In this study, we employed a high-density single nucleotide polymorphism (SNP) chip to genotype 386 Nellore steers, a Bos indicus breed and, a Bayesian approach to identify genomic regions and putative candidate genes that could be involved with deposition and composition of IMF.

Results: Twenty-three genomic regions (1-Mb SNP windows) associated with IMF deposition and FA composition that each explain ≥1% of the genetic variance were identified on chromosomes 2, 3, 6, 7, 8, 9, 10, 11, 12, 17, 26 and 27. Many of these regions were not previously detected in other breeds. The genes present in these regions were identified and some can help explain the genetic basis of deposition and composition of fat in cattle.

Conclusions: The genomic regions and genes identified contribute to a better understanding of the genetic control of fatty acid deposition and can lead to DNA-based selection strategies to improve meat quality for human consumption.

Show MeSH