Limits...
Electrically-driven modulation of surface-grafted RGD peptides for manipulation of cell adhesion.

Lashkor M, Rawson FJ, Stephenson-Brown A, Preece JA, Mendes PM - Chem. Commun. (Camb.) (2014)

Bottom Line: Reported herein is a switchable surface that relies on electrically-induced conformational changes within surface-grafted arginine-glycine-aspartate (RGD) oligopeptides as the means of modulating cell adhesion.

View Article: PubMed Central - PubMed

Affiliation: School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. p.m.mendes@bham.ac.uk.

ABSTRACT
Reported herein is a switchable surface that relies on electrically-induced conformational changes within surface-grafted arginine-glycine-aspartate (RGD) oligopeptides as the means of modulating cell adhesion.

Show MeSH

Related in: MedlinePlus

Density of adhered cells on C3K-GRGDS:C11TEG, C11TEG, C6EG-GRGDS:C11TEG mixed SAMs that were normalized against the density of cells adherent onto the C3K-GRGDS:C11TEG mixed SAM. The surfaces were cultured in RAW 264.7 for 1 h under OC conditions or while applying –0.4 V.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4230383&req=5

fig3: Density of adhered cells on C3K-GRGDS:C11TEG, C11TEG, C6EG-GRGDS:C11TEG mixed SAMs that were normalized against the density of cells adherent onto the C3K-GRGDS:C11TEG mixed SAM. The surfaces were cultured in RAW 264.7 for 1 h under OC conditions or while applying –0.4 V.

Mentions: In order to demonstrate that the C3K-GRGDS:C11TEG mixed SAMs can support or resist cell adhesion on demand, the macrophage cells were cultured on the C3K-GRGDS:C11TEG mixed SAM in DMEM medium under OC conditions and applied negative potential (–0.4 V) for a period of 1 h. Note that DMEM contains a mixture of inorganic salts, amino acids, glucose and vitamins. On application of the applied potential of –0.4 V the number of adherent cells was 70% less compared to the C3K-GRGDS:C11TEG mixed SAMs under OC conditions, Fig. 3. Similar switching efficiencies have been observed in another oligopeptide system using different DMEM solutions.44 These findings suggest that the negative potential induces the conformational changes in the C3K moiety of C3K-GRGDS in the SAM which in turn leads to the RGD moiety being concealed and hence reducing the binding of the cells.


Electrically-driven modulation of surface-grafted RGD peptides for manipulation of cell adhesion.

Lashkor M, Rawson FJ, Stephenson-Brown A, Preece JA, Mendes PM - Chem. Commun. (Camb.) (2014)

Density of adhered cells on C3K-GRGDS:C11TEG, C11TEG, C6EG-GRGDS:C11TEG mixed SAMs that were normalized against the density of cells adherent onto the C3K-GRGDS:C11TEG mixed SAM. The surfaces were cultured in RAW 264.7 for 1 h under OC conditions or while applying –0.4 V.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4230383&req=5

fig3: Density of adhered cells on C3K-GRGDS:C11TEG, C11TEG, C6EG-GRGDS:C11TEG mixed SAMs that were normalized against the density of cells adherent onto the C3K-GRGDS:C11TEG mixed SAM. The surfaces were cultured in RAW 264.7 for 1 h under OC conditions or while applying –0.4 V.
Mentions: In order to demonstrate that the C3K-GRGDS:C11TEG mixed SAMs can support or resist cell adhesion on demand, the macrophage cells were cultured on the C3K-GRGDS:C11TEG mixed SAM in DMEM medium under OC conditions and applied negative potential (–0.4 V) for a period of 1 h. Note that DMEM contains a mixture of inorganic salts, amino acids, glucose and vitamins. On application of the applied potential of –0.4 V the number of adherent cells was 70% less compared to the C3K-GRGDS:C11TEG mixed SAMs under OC conditions, Fig. 3. Similar switching efficiencies have been observed in another oligopeptide system using different DMEM solutions.44 These findings suggest that the negative potential induces the conformational changes in the C3K moiety of C3K-GRGDS in the SAM which in turn leads to the RGD moiety being concealed and hence reducing the binding of the cells.

Bottom Line: Reported herein is a switchable surface that relies on electrically-induced conformational changes within surface-grafted arginine-glycine-aspartate (RGD) oligopeptides as the means of modulating cell adhesion.

View Article: PubMed Central - PubMed

Affiliation: School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. p.m.mendes@bham.ac.uk.

ABSTRACT
Reported herein is a switchable surface that relies on electrically-induced conformational changes within surface-grafted arginine-glycine-aspartate (RGD) oligopeptides as the means of modulating cell adhesion.

Show MeSH
Related in: MedlinePlus