Limits...
Comparative performance of a panel of commercially available antimicrobial nanocoatings in Europe.

Molling JW, Seezink JW, Teunissen BE, Muijrers-Chen I, Borm PJ - Nanotechnol Sci Appl (2014)

Bottom Line: The differences in antimicrobial activity among all of the coatings, expressed as log reduction values, varied between 1.3 and 6.6, while the variation within the nanomaterial-based group was between 2.0 and 6.2.Although nanosilver coatings were on average very effective in reducing the number of viable bacteria after challenge, the strongest log reduction (6.6) was seen with a coating that has immobilized, covalently bound quaternary ammonium salt in its matrix.However, considering the unknowns in relation to ecotoxicological emission and effects, it needs further consideration before widespread application into different environments.

View Article: PubMed Central - PubMed

Affiliation: Zuyd University of Applied Sciences, Heerlen, the Netherlands.

ABSTRACT

Background: Bacterial resistance against the classic antibiotics is posing an increasing challenge for the prevention and treatment of infections in health care environments. The introduction of antimicrobial nanocoatings with active ingredients provides alternative measures for active killing of microorganisms, through a preventive hygiene approach.

Purpose: The purpose of this study was to investigate the antimicrobial activity of a panel of antimicrobial coatings available on the European market.

Methods: A comparative, biased selection of commercially available antimicrobial coatings was tested for antimicrobial efficiency. Suppliers were contacted to deliver their coatings on glass and/or stainless steel substrates. In total, 23 coatings from eleven suppliers were received, which were investigated for their effect on the growth of Escherichia coli, using the International Organization for Standardization (ISO) 22196 protocol.

Results: The majority of nanomaterial-containing coatings (n=13) contained nanosilver (n=12), while only one had photocatalytic TiO2 as the active particle. The differences in antimicrobial activity among all of the coatings, expressed as log reduction values, varied between 1.3 and 6.6, while the variation within the nanomaterial-based group was between 2.0 and 6.2. Although nanosilver coatings were on average very effective in reducing the number of viable bacteria after challenge, the strongest log reduction (6.6) was seen with a coating that has immobilized, covalently bound quaternary ammonium salt in its matrix. Besides these two compounds, coatings containing TiO2, poly(dimethylsiloxane), triclosan, or zinc pyrithione evoked 100% killing of E. coli.

Conclusion: Our findings indicate that nanosilver dominates the nanoparticle-based coatings and performs adequately. However, considering the unknowns in relation to ecotoxicological emission and effects, it needs further consideration before widespread application into different environments.

No MeSH data available.


Related in: MedlinePlus

Logarithmic reduction of bacterial load after incubation on provided coatings.Notes: Bacterial suspensions (400 µL, of approximately 105 CFU/mL) were cultured on substrates (stainless steel or glass, as indicated by hatches in top of graphs) coated with antimicrobial agents. Logarithmic reduction in bacterial load after 24 hour incubation, compared with the control substrate (stainless steel or glass alone) is depicted. Bars represent values of pooled triplicate samples obtained from (A) nanomaterial-based coatings and (B) coatings based on other antimicrobial agents.Abbreviation: AMC, antimicrobial coating.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4230231&req=5

f2-nsa-7-097: Logarithmic reduction of bacterial load after incubation on provided coatings.Notes: Bacterial suspensions (400 µL, of approximately 105 CFU/mL) were cultured on substrates (stainless steel or glass, as indicated by hatches in top of graphs) coated with antimicrobial agents. Logarithmic reduction in bacterial load after 24 hour incubation, compared with the control substrate (stainless steel or glass alone) is depicted. Bars represent values of pooled triplicate samples obtained from (A) nanomaterial-based coatings and (B) coatings based on other antimicrobial agents.Abbreviation: AMC, antimicrobial coating.

Mentions: As expected, the activity, as determined by the ISO protocol, differed considerably among coatings, where the log reduction (R) values attained varied between 1.3 and 6.1 as a maximum (Table 1 and Figure 2). The interpretation of the variation in R-values was performed by focusing on the nanosized coatings (Figure 2A) or on the non-nanosized coatings (Figure 2B) based on nanosized active ingredients and those based on classical biocide ingredients.


Comparative performance of a panel of commercially available antimicrobial nanocoatings in Europe.

Molling JW, Seezink JW, Teunissen BE, Muijrers-Chen I, Borm PJ - Nanotechnol Sci Appl (2014)

Logarithmic reduction of bacterial load after incubation on provided coatings.Notes: Bacterial suspensions (400 µL, of approximately 105 CFU/mL) were cultured on substrates (stainless steel or glass, as indicated by hatches in top of graphs) coated with antimicrobial agents. Logarithmic reduction in bacterial load after 24 hour incubation, compared with the control substrate (stainless steel or glass alone) is depicted. Bars represent values of pooled triplicate samples obtained from (A) nanomaterial-based coatings and (B) coatings based on other antimicrobial agents.Abbreviation: AMC, antimicrobial coating.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4230231&req=5

f2-nsa-7-097: Logarithmic reduction of bacterial load after incubation on provided coatings.Notes: Bacterial suspensions (400 µL, of approximately 105 CFU/mL) were cultured on substrates (stainless steel or glass, as indicated by hatches in top of graphs) coated with antimicrobial agents. Logarithmic reduction in bacterial load after 24 hour incubation, compared with the control substrate (stainless steel or glass alone) is depicted. Bars represent values of pooled triplicate samples obtained from (A) nanomaterial-based coatings and (B) coatings based on other antimicrobial agents.Abbreviation: AMC, antimicrobial coating.
Mentions: As expected, the activity, as determined by the ISO protocol, differed considerably among coatings, where the log reduction (R) values attained varied between 1.3 and 6.1 as a maximum (Table 1 and Figure 2). The interpretation of the variation in R-values was performed by focusing on the nanosized coatings (Figure 2A) or on the non-nanosized coatings (Figure 2B) based on nanosized active ingredients and those based on classical biocide ingredients.

Bottom Line: The differences in antimicrobial activity among all of the coatings, expressed as log reduction values, varied between 1.3 and 6.6, while the variation within the nanomaterial-based group was between 2.0 and 6.2.Although nanosilver coatings were on average very effective in reducing the number of viable bacteria after challenge, the strongest log reduction (6.6) was seen with a coating that has immobilized, covalently bound quaternary ammonium salt in its matrix.However, considering the unknowns in relation to ecotoxicological emission and effects, it needs further consideration before widespread application into different environments.

View Article: PubMed Central - PubMed

Affiliation: Zuyd University of Applied Sciences, Heerlen, the Netherlands.

ABSTRACT

Background: Bacterial resistance against the classic antibiotics is posing an increasing challenge for the prevention and treatment of infections in health care environments. The introduction of antimicrobial nanocoatings with active ingredients provides alternative measures for active killing of microorganisms, through a preventive hygiene approach.

Purpose: The purpose of this study was to investigate the antimicrobial activity of a panel of antimicrobial coatings available on the European market.

Methods: A comparative, biased selection of commercially available antimicrobial coatings was tested for antimicrobial efficiency. Suppliers were contacted to deliver their coatings on glass and/or stainless steel substrates. In total, 23 coatings from eleven suppliers were received, which were investigated for their effect on the growth of Escherichia coli, using the International Organization for Standardization (ISO) 22196 protocol.

Results: The majority of nanomaterial-containing coatings (n=13) contained nanosilver (n=12), while only one had photocatalytic TiO2 as the active particle. The differences in antimicrobial activity among all of the coatings, expressed as log reduction values, varied between 1.3 and 6.6, while the variation within the nanomaterial-based group was between 2.0 and 6.2. Although nanosilver coatings were on average very effective in reducing the number of viable bacteria after challenge, the strongest log reduction (6.6) was seen with a coating that has immobilized, covalently bound quaternary ammonium salt in its matrix. Besides these two compounds, coatings containing TiO2, poly(dimethylsiloxane), triclosan, or zinc pyrithione evoked 100% killing of E. coli.

Conclusion: Our findings indicate that nanosilver dominates the nanoparticle-based coatings and performs adequately. However, considering the unknowns in relation to ecotoxicological emission and effects, it needs further consideration before widespread application into different environments.

No MeSH data available.


Related in: MedlinePlus