Limits...
Historical factors that have shaped the evolution of tropical reef fishes: a review of phylogenies, biogeography, and remaining questions.

Cowman PF - Front Genet (2014)

Bottom Line: How will a complete phylogeny of fishes benefit the study of biodiversity in the tropics?I summarize the major biogeographic and climatic events over the last 65 million years that have regionalized the tropical marine belt and what effect they have had on the molecular record of fishes and global biodiversity patterns.By examining recent phylogenetic trees of major reef associated groups, I identify gaps to be filled in order to obtain a clearer picture of the origins of coral reef fish assemblages.

View Article: PubMed Central - PubMed

Affiliation: Department of Ecology and Evolutionary Biology, Yale University New Haven, CT, USA.

ABSTRACT
Biodiversity patterns across the marine tropics have intrigued evolutionary biologists and ecologists alike. Tropical coral reefs host 1/3 of all marine species of fish on 0.1% of the ocean's surface. Yet our understanding of how mechanistic processes have underpinned the generation of this diversity is limited. However, it has become clear that the biogeographic history of the marine tropics has played an important role in shaping the diversity of tropical reef fishes we see today. In the last decade, molecular phylogenies and age estimation techniques have provided a temporal framework in which the ancestral biogeographic origins of reef fish lineages have been inferred, but few have included fully sampled phylogenies or made inferences at a global scale. We are currently at a point where new sequencing technologies are accelerating the reconstruction and the resolution of the Fish Tree of Life. How will a complete phylogeny of fishes benefit the study of biodiversity in the tropics? Here, I review the literature concerning the evolutionary history of reef-associated fishes from a biogeographic perspective. I summarize the major biogeographic and climatic events over the last 65 million years that have regionalized the tropical marine belt and what effect they have had on the molecular record of fishes and global biodiversity patterns. By examining recent phylogenetic trees of major reef associated groups, I identify gaps to be filled in order to obtain a clearer picture of the origins of coral reef fish assemblages. Finally, I discuss questions that remain to be answered and new approaches to uncover the mechanistic processes that underpin the evolution of biodiversity on coral reefs.

No MeSH data available.


Related in: MedlinePlus

Biogeographic ages of species of the families Labridae, Pomacentridae, and Chaetodontidae. Plot shows mean (circle) and 95% CI (whiskers) of the distribution of ages of origination of extant lineages in each biogeographic region, and globally for the Labridae, Pomacentridae, Chaetodontidae (data from Cowman and Bellwood, 2013a). Underlying schematic map shows regional scheme used by Cowman and Bellwood (2013a) for ancestral biogeographic reconstruction. This scheme differs from the regional scheme of Kulbicki et al. (2013) shown in Figure 1C. Age distributions for each region represent the ages of extant lineages that originated in that particular region accounting for ancestral biogeographic reconstruction (see Cowman and Bellwood, 2013a). EP, East Pacific; Atl, Atlantic; In, Indian Ocean; IAA, IAA Hotspot; CP, Central Pacific Islands; GL, Global.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4230204&req=5

Figure 3: Biogeographic ages of species of the families Labridae, Pomacentridae, and Chaetodontidae. Plot shows mean (circle) and 95% CI (whiskers) of the distribution of ages of origination of extant lineages in each biogeographic region, and globally for the Labridae, Pomacentridae, Chaetodontidae (data from Cowman and Bellwood, 2013a). Underlying schematic map shows regional scheme used by Cowman and Bellwood (2013a) for ancestral biogeographic reconstruction. This scheme differs from the regional scheme of Kulbicki et al. (2013) shown in Figure 1C. Age distributions for each region represent the ages of extant lineages that originated in that particular region accounting for ancestral biogeographic reconstruction (see Cowman and Bellwood, 2013a). EP, East Pacific; Atl, Atlantic; In, Indian Ocean; IAA, IAA Hotspot; CP, Central Pacific Islands; GL, Global.

Mentions: The majority of extant coral reef fishes examined by Cowman and Bellwood (2011, 2013a) are of Miocene age (23–5 mya; Figure 3) with some possibly being older than the IAA hotspot (Renema et al., 2008). While some geographic variation in the reconstructed ages of lineages exists (Figure 3), the older ages of extant species challenged the early suggestion that sea level fluctuations during the Pleistocene was a major factor in the origin of modern coral reef assemblages (Potts, 1985). For reef fishes, the majority of cladogenetic events occurred in the Miocene but speciation still continues in several groups from the Pleistocene onward (Rocha and Bowen, 2008). Pleistocene speciation in these groups may be linked to patterns of barrier vicariance (Bowen et al., 2013; Cowman and Bellwood, 2013b), peripheral budding (Hodge et al., 2012), and more recent fluctuations in coral reef stability (Pellissier et al., 2014). Pleistocene processes may very well have played an active role in the evolution of butterflyfishes (McMillan and Palumbi, 1995), which display younger global ages of extant lineages (∼2.6 mya) than labrids (∼6.7 mya) and pomacentrids (∼6.7 mya), particularly in the Indian Ocean and IAA hotspot (Figure 3). It is likely that when the gaps in taxonomic sampling of these reef fish families are filled, and cryptic species are identified, the inclusion of unsampled lineages closer to the present may enhance the role played by speciation in the Pleistocene and the importance of peripheral locations in promoting biodiversity. Processes at work in the Miocene appear to be the main source of origination of modern reef fish biodiversity patterns, while processes maintaining this pattern are prominent from the Pliocene/Pleistocene. However, to gain a clearer picture of the magnitude of these processes across the marine tropics, studies with a biogeographic focus have been important.


Historical factors that have shaped the evolution of tropical reef fishes: a review of phylogenies, biogeography, and remaining questions.

Cowman PF - Front Genet (2014)

Biogeographic ages of species of the families Labridae, Pomacentridae, and Chaetodontidae. Plot shows mean (circle) and 95% CI (whiskers) of the distribution of ages of origination of extant lineages in each biogeographic region, and globally for the Labridae, Pomacentridae, Chaetodontidae (data from Cowman and Bellwood, 2013a). Underlying schematic map shows regional scheme used by Cowman and Bellwood (2013a) for ancestral biogeographic reconstruction. This scheme differs from the regional scheme of Kulbicki et al. (2013) shown in Figure 1C. Age distributions for each region represent the ages of extant lineages that originated in that particular region accounting for ancestral biogeographic reconstruction (see Cowman and Bellwood, 2013a). EP, East Pacific; Atl, Atlantic; In, Indian Ocean; IAA, IAA Hotspot; CP, Central Pacific Islands; GL, Global.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4230204&req=5

Figure 3: Biogeographic ages of species of the families Labridae, Pomacentridae, and Chaetodontidae. Plot shows mean (circle) and 95% CI (whiskers) of the distribution of ages of origination of extant lineages in each biogeographic region, and globally for the Labridae, Pomacentridae, Chaetodontidae (data from Cowman and Bellwood, 2013a). Underlying schematic map shows regional scheme used by Cowman and Bellwood (2013a) for ancestral biogeographic reconstruction. This scheme differs from the regional scheme of Kulbicki et al. (2013) shown in Figure 1C. Age distributions for each region represent the ages of extant lineages that originated in that particular region accounting for ancestral biogeographic reconstruction (see Cowman and Bellwood, 2013a). EP, East Pacific; Atl, Atlantic; In, Indian Ocean; IAA, IAA Hotspot; CP, Central Pacific Islands; GL, Global.
Mentions: The majority of extant coral reef fishes examined by Cowman and Bellwood (2011, 2013a) are of Miocene age (23–5 mya; Figure 3) with some possibly being older than the IAA hotspot (Renema et al., 2008). While some geographic variation in the reconstructed ages of lineages exists (Figure 3), the older ages of extant species challenged the early suggestion that sea level fluctuations during the Pleistocene was a major factor in the origin of modern coral reef assemblages (Potts, 1985). For reef fishes, the majority of cladogenetic events occurred in the Miocene but speciation still continues in several groups from the Pleistocene onward (Rocha and Bowen, 2008). Pleistocene speciation in these groups may be linked to patterns of barrier vicariance (Bowen et al., 2013; Cowman and Bellwood, 2013b), peripheral budding (Hodge et al., 2012), and more recent fluctuations in coral reef stability (Pellissier et al., 2014). Pleistocene processes may very well have played an active role in the evolution of butterflyfishes (McMillan and Palumbi, 1995), which display younger global ages of extant lineages (∼2.6 mya) than labrids (∼6.7 mya) and pomacentrids (∼6.7 mya), particularly in the Indian Ocean and IAA hotspot (Figure 3). It is likely that when the gaps in taxonomic sampling of these reef fish families are filled, and cryptic species are identified, the inclusion of unsampled lineages closer to the present may enhance the role played by speciation in the Pleistocene and the importance of peripheral locations in promoting biodiversity. Processes at work in the Miocene appear to be the main source of origination of modern reef fish biodiversity patterns, while processes maintaining this pattern are prominent from the Pliocene/Pleistocene. However, to gain a clearer picture of the magnitude of these processes across the marine tropics, studies with a biogeographic focus have been important.

Bottom Line: How will a complete phylogeny of fishes benefit the study of biodiversity in the tropics?I summarize the major biogeographic and climatic events over the last 65 million years that have regionalized the tropical marine belt and what effect they have had on the molecular record of fishes and global biodiversity patterns.By examining recent phylogenetic trees of major reef associated groups, I identify gaps to be filled in order to obtain a clearer picture of the origins of coral reef fish assemblages.

View Article: PubMed Central - PubMed

Affiliation: Department of Ecology and Evolutionary Biology, Yale University New Haven, CT, USA.

ABSTRACT
Biodiversity patterns across the marine tropics have intrigued evolutionary biologists and ecologists alike. Tropical coral reefs host 1/3 of all marine species of fish on 0.1% of the ocean's surface. Yet our understanding of how mechanistic processes have underpinned the generation of this diversity is limited. However, it has become clear that the biogeographic history of the marine tropics has played an important role in shaping the diversity of tropical reef fishes we see today. In the last decade, molecular phylogenies and age estimation techniques have provided a temporal framework in which the ancestral biogeographic origins of reef fish lineages have been inferred, but few have included fully sampled phylogenies or made inferences at a global scale. We are currently at a point where new sequencing technologies are accelerating the reconstruction and the resolution of the Fish Tree of Life. How will a complete phylogeny of fishes benefit the study of biodiversity in the tropics? Here, I review the literature concerning the evolutionary history of reef-associated fishes from a biogeographic perspective. I summarize the major biogeographic and climatic events over the last 65 million years that have regionalized the tropical marine belt and what effect they have had on the molecular record of fishes and global biodiversity patterns. By examining recent phylogenetic trees of major reef associated groups, I identify gaps to be filled in order to obtain a clearer picture of the origins of coral reef fish assemblages. Finally, I discuss questions that remain to be answered and new approaches to uncover the mechanistic processes that underpin the evolution of biodiversity on coral reefs.

No MeSH data available.


Related in: MedlinePlus