Limits...
Dissociable effects of game elements on motivation and cognition in a task-switching training in middle childhood.

Dörrenbächer S, Müller PM, Tröger J, Kray J - Front Psychol (2014)

Bottom Line: The results indicated that the addition of game elements to a training setting enhanced the intrinsic interest in task practice, independently of the cognitive demands placed by the training type.These motivation-induced benefits projected onto the switching performance in a switching situation different from the trained one (near-transfer measurement).Hence, the motivational setting clearly had a positive impact on the training motivation and on the paradigm-specific task-switching abilities; it did not, however, consistently generalize on broad cognitive processes.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Development of Language, Learning and Action, Saarland University Saarbrücken, Germany.

ABSTRACT
Although motivational reinforcers are often used to enhance the attractiveness of trainings of cognitive control in children, little is known about how such motivational manipulations of the setting contribute to separate gains in motivation and cognitive-control performance. Here we provide a framework for systematically investigating the impact of a motivational video-game setting on the training motivation, the task performance, and the transfer success in a task-switching training in middle-aged children (8-11 years of age). We manipulated both the type of training (low-demanding/single-task training vs. high-demanding/task-switching training) as well as the motivational setting (low-motivational/without video-game elements vs. high-motivational/with video-game elements) separately from another. The results indicated that the addition of game elements to a training setting enhanced the intrinsic interest in task practice, independently of the cognitive demands placed by the training type. In the task-switching group, the high-motivational training setting led to an additional enhancement of task and switching performance during the training phase right from the outset. These motivation-induced benefits projected onto the switching performance in a switching situation different from the trained one (near-transfer measurement). However, in structurally dissimilar cognitive tasks (far-transfer measurement), the motivational gains only transferred to the response dynamics (speed of processing). Hence, the motivational setting clearly had a positive impact on the training motivation and on the paradigm-specific task-switching abilities; it did not, however, consistently generalize on broad cognitive processes. These findings shed new light on the conflation of motivation and cognition in childhood and may help to refine guidelines for designing adequate training interventions.

No MeSH data available.


Related in: MedlinePlus

Far-transfer performance on inhibitory control: mean latencies (ms) and error rates (%) (upper left panel) as well as respective interference costs (upper right panel) of the Stroop task; mean latencies (ms) and error rates (%) (lower left panel) as well as respective interference costs (lower right panel) of the AX-CPT, as a function of Training Group (single-LM, single-HM, switching-LM, switching-HM) and Session (pretest/posttest). Error bars depict SE based on the group x session interactions comparing group conditions of the respective mixed ANOVAs according to Jarmasz and Hollands (2009). Note that the selected variance estimators are not suited to compare session conditions.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4230167&req=5

Figure 8: Far-transfer performance on inhibitory control: mean latencies (ms) and error rates (%) (upper left panel) as well as respective interference costs (upper right panel) of the Stroop task; mean latencies (ms) and error rates (%) (lower left panel) as well as respective interference costs (lower right panel) of the AX-CPT, as a function of Training Group (single-LM, single-HM, switching-LM, switching-HM) and Session (pretest/posttest). Error bars depict SE based on the group x session interactions comparing group conditions of the respective mixed ANOVAs according to Jarmasz and Hollands (2009). Note that the selected variance estimators are not suited to compare session conditions.

Mentions: Inhibition. With regard to inhibitory control, we analyzed the Stroop task as well as the AX-CPT (see Figure 8). In both cases, data were subjected to a Three-Way ANOVA with the between-subjects factor Group (single-LM/single-HM/switching-LM/switching-HM), and the within-subjects factors Trial Type (Stroop: neutral/congruent/incongruent, and AX-CPT: AX/AY/BX/BY) and Session (pretest/posttest). We used the same group contrasts as in the previous section. Interference costs were defined as contrasts of the respective trial-type levels: For the Stroop task, interference was calculated as the difference in mean performance between neutral and incongruent trials (contrast: 1 0 −1), and for the AX-CPT as the difference between non-interference trials (AX,BY) and interference trials (AY,BX; contrast: 1 −1 −1 1).


Dissociable effects of game elements on motivation and cognition in a task-switching training in middle childhood.

Dörrenbächer S, Müller PM, Tröger J, Kray J - Front Psychol (2014)

Far-transfer performance on inhibitory control: mean latencies (ms) and error rates (%) (upper left panel) as well as respective interference costs (upper right panel) of the Stroop task; mean latencies (ms) and error rates (%) (lower left panel) as well as respective interference costs (lower right panel) of the AX-CPT, as a function of Training Group (single-LM, single-HM, switching-LM, switching-HM) and Session (pretest/posttest). Error bars depict SE based on the group x session interactions comparing group conditions of the respective mixed ANOVAs according to Jarmasz and Hollands (2009). Note that the selected variance estimators are not suited to compare session conditions.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4230167&req=5

Figure 8: Far-transfer performance on inhibitory control: mean latencies (ms) and error rates (%) (upper left panel) as well as respective interference costs (upper right panel) of the Stroop task; mean latencies (ms) and error rates (%) (lower left panel) as well as respective interference costs (lower right panel) of the AX-CPT, as a function of Training Group (single-LM, single-HM, switching-LM, switching-HM) and Session (pretest/posttest). Error bars depict SE based on the group x session interactions comparing group conditions of the respective mixed ANOVAs according to Jarmasz and Hollands (2009). Note that the selected variance estimators are not suited to compare session conditions.
Mentions: Inhibition. With regard to inhibitory control, we analyzed the Stroop task as well as the AX-CPT (see Figure 8). In both cases, data were subjected to a Three-Way ANOVA with the between-subjects factor Group (single-LM/single-HM/switching-LM/switching-HM), and the within-subjects factors Trial Type (Stroop: neutral/congruent/incongruent, and AX-CPT: AX/AY/BX/BY) and Session (pretest/posttest). We used the same group contrasts as in the previous section. Interference costs were defined as contrasts of the respective trial-type levels: For the Stroop task, interference was calculated as the difference in mean performance between neutral and incongruent trials (contrast: 1 0 −1), and for the AX-CPT as the difference between non-interference trials (AX,BY) and interference trials (AY,BX; contrast: 1 −1 −1 1).

Bottom Line: The results indicated that the addition of game elements to a training setting enhanced the intrinsic interest in task practice, independently of the cognitive demands placed by the training type.These motivation-induced benefits projected onto the switching performance in a switching situation different from the trained one (near-transfer measurement).Hence, the motivational setting clearly had a positive impact on the training motivation and on the paradigm-specific task-switching abilities; it did not, however, consistently generalize on broad cognitive processes.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Development of Language, Learning and Action, Saarland University Saarbrücken, Germany.

ABSTRACT
Although motivational reinforcers are often used to enhance the attractiveness of trainings of cognitive control in children, little is known about how such motivational manipulations of the setting contribute to separate gains in motivation and cognitive-control performance. Here we provide a framework for systematically investigating the impact of a motivational video-game setting on the training motivation, the task performance, and the transfer success in a task-switching training in middle-aged children (8-11 years of age). We manipulated both the type of training (low-demanding/single-task training vs. high-demanding/task-switching training) as well as the motivational setting (low-motivational/without video-game elements vs. high-motivational/with video-game elements) separately from another. The results indicated that the addition of game elements to a training setting enhanced the intrinsic interest in task practice, independently of the cognitive demands placed by the training type. In the task-switching group, the high-motivational training setting led to an additional enhancement of task and switching performance during the training phase right from the outset. These motivation-induced benefits projected onto the switching performance in a switching situation different from the trained one (near-transfer measurement). However, in structurally dissimilar cognitive tasks (far-transfer measurement), the motivational gains only transferred to the response dynamics (speed of processing). Hence, the motivational setting clearly had a positive impact on the training motivation and on the paradigm-specific task-switching abilities; it did not, however, consistently generalize on broad cognitive processes. These findings shed new light on the conflation of motivation and cognition in childhood and may help to refine guidelines for designing adequate training interventions.

No MeSH data available.


Related in: MedlinePlus