Limits...
Dissociable effects of game elements on motivation and cognition in a task-switching training in middle childhood.

Dörrenbächer S, Müller PM, Tröger J, Kray J - Front Psychol (2014)

Bottom Line: The results indicated that the addition of game elements to a training setting enhanced the intrinsic interest in task practice, independently of the cognitive demands placed by the training type.These motivation-induced benefits projected onto the switching performance in a switching situation different from the trained one (near-transfer measurement).Hence, the motivational setting clearly had a positive impact on the training motivation and on the paradigm-specific task-switching abilities; it did not, however, consistently generalize on broad cognitive processes.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Development of Language, Learning and Action, Saarland University Saarbrücken, Germany.

ABSTRACT
Although motivational reinforcers are often used to enhance the attractiveness of trainings of cognitive control in children, little is known about how such motivational manipulations of the setting contribute to separate gains in motivation and cognitive-control performance. Here we provide a framework for systematically investigating the impact of a motivational video-game setting on the training motivation, the task performance, and the transfer success in a task-switching training in middle-aged children (8-11 years of age). We manipulated both the type of training (low-demanding/single-task training vs. high-demanding/task-switching training) as well as the motivational setting (low-motivational/without video-game elements vs. high-motivational/with video-game elements) separately from another. The results indicated that the addition of game elements to a training setting enhanced the intrinsic interest in task practice, independently of the cognitive demands placed by the training type. In the task-switching group, the high-motivational training setting led to an additional enhancement of task and switching performance during the training phase right from the outset. These motivation-induced benefits projected onto the switching performance in a switching situation different from the trained one (near-transfer measurement). However, in structurally dissimilar cognitive tasks (far-transfer measurement), the motivational gains only transferred to the response dynamics (speed of processing). Hence, the motivational setting clearly had a positive impact on the training motivation and on the paradigm-specific task-switching abilities; it did not, however, consistently generalize on broad cognitive processes. These findings shed new light on the conflation of motivation and cognition in childhood and may help to refine guidelines for designing adequate training interventions.

No MeSH data available.


Related in: MedlinePlus

Near-transfer performance on mean latencies (ms) and error rates (%) (left panel) as well as on the respective switching costs (middle panel) and mixing costs (right panel) as a function of Training Group (single-LM, single-HM, switching-LM, switching-HM) and Session (pretest, posttest). Error bars depict SE based on the group x session interaction comparing group conditions of the respective mixed ANOVA according to Jarmasz and Hollands (2009). Note that the selected variance estimators are not suited to compare session conditions.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4230167&req=5

Figure 7: Near-transfer performance on mean latencies (ms) and error rates (%) (left panel) as well as on the respective switching costs (middle panel) and mixing costs (right panel) as a function of Training Group (single-LM, single-HM, switching-LM, switching-HM) and Session (pretest, posttest). Error bars depict SE based on the group x session interaction comparing group conditions of the respective mixed ANOVA according to Jarmasz and Hollands (2009). Note that the selected variance estimators are not suited to compare session conditions.

Mentions: On the level of accuracy, we yielded a main effect for Session, [F(1, 48) = 4.60, p < 0.05, η2p = 0.09], indicating an increase in errors from pre- to post-test. This increase was again more pronounced for the HM-groups than for the LM-groups, [F(1, 48) = 6.50, p < 0.05, η2p = 0.13]. Results also revealed reliable mixing costs, [F(1, 51) = 18.18, p < 0.001, η2p = 0.26], and switching costs, [F(1, 51) = 47.36, p < 0.001, η2p = 0.48]. Mixing costs were slightly reduced (but not in the switching-HM group, see Figure 7), [F(1, 51) = 2.96, p < 0.05, η2p = 0.05]. Switching costs increased from pre- to post-test, [F(1, 51) = 5.61, p < 0.05, η2p = 0.10]. This specific increase of switching costs was larger for the switching-HM group than for the switching-LM group, [F(1, 25) = 5.95, p < 0.05, η2p = 0.12]. However, the latter group difference needs to be interpreted under consideration of the revealed baseline differences in error switch costs. The ES for error costs were, in essence, congruent with the variance-analytical results. That is to say, the switching-HM group yielded maximum ES for the increase in error switching costs (switching-HM: d′ = −1.46) as compared to the other groups (single-LM: d′ = −0.27; single-HM: d′ = −0.48; and especially as compared to the switching-LM group: d′ = 0.05), while ES for mixing costs showed similar values across groups, ranging from d′ = −0.23 to d′ = 0.37; only the single-LM group revealed pronounced benefits for ER costs with an ES of d′ = 0.91.


Dissociable effects of game elements on motivation and cognition in a task-switching training in middle childhood.

Dörrenbächer S, Müller PM, Tröger J, Kray J - Front Psychol (2014)

Near-transfer performance on mean latencies (ms) and error rates (%) (left panel) as well as on the respective switching costs (middle panel) and mixing costs (right panel) as a function of Training Group (single-LM, single-HM, switching-LM, switching-HM) and Session (pretest, posttest). Error bars depict SE based on the group x session interaction comparing group conditions of the respective mixed ANOVA according to Jarmasz and Hollands (2009). Note that the selected variance estimators are not suited to compare session conditions.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4230167&req=5

Figure 7: Near-transfer performance on mean latencies (ms) and error rates (%) (left panel) as well as on the respective switching costs (middle panel) and mixing costs (right panel) as a function of Training Group (single-LM, single-HM, switching-LM, switching-HM) and Session (pretest, posttest). Error bars depict SE based on the group x session interaction comparing group conditions of the respective mixed ANOVA according to Jarmasz and Hollands (2009). Note that the selected variance estimators are not suited to compare session conditions.
Mentions: On the level of accuracy, we yielded a main effect for Session, [F(1, 48) = 4.60, p < 0.05, η2p = 0.09], indicating an increase in errors from pre- to post-test. This increase was again more pronounced for the HM-groups than for the LM-groups, [F(1, 48) = 6.50, p < 0.05, η2p = 0.13]. Results also revealed reliable mixing costs, [F(1, 51) = 18.18, p < 0.001, η2p = 0.26], and switching costs, [F(1, 51) = 47.36, p < 0.001, η2p = 0.48]. Mixing costs were slightly reduced (but not in the switching-HM group, see Figure 7), [F(1, 51) = 2.96, p < 0.05, η2p = 0.05]. Switching costs increased from pre- to post-test, [F(1, 51) = 5.61, p < 0.05, η2p = 0.10]. This specific increase of switching costs was larger for the switching-HM group than for the switching-LM group, [F(1, 25) = 5.95, p < 0.05, η2p = 0.12]. However, the latter group difference needs to be interpreted under consideration of the revealed baseline differences in error switch costs. The ES for error costs were, in essence, congruent with the variance-analytical results. That is to say, the switching-HM group yielded maximum ES for the increase in error switching costs (switching-HM: d′ = −1.46) as compared to the other groups (single-LM: d′ = −0.27; single-HM: d′ = −0.48; and especially as compared to the switching-LM group: d′ = 0.05), while ES for mixing costs showed similar values across groups, ranging from d′ = −0.23 to d′ = 0.37; only the single-LM group revealed pronounced benefits for ER costs with an ES of d′ = 0.91.

Bottom Line: The results indicated that the addition of game elements to a training setting enhanced the intrinsic interest in task practice, independently of the cognitive demands placed by the training type.These motivation-induced benefits projected onto the switching performance in a switching situation different from the trained one (near-transfer measurement).Hence, the motivational setting clearly had a positive impact on the training motivation and on the paradigm-specific task-switching abilities; it did not, however, consistently generalize on broad cognitive processes.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Development of Language, Learning and Action, Saarland University Saarbrücken, Germany.

ABSTRACT
Although motivational reinforcers are often used to enhance the attractiveness of trainings of cognitive control in children, little is known about how such motivational manipulations of the setting contribute to separate gains in motivation and cognitive-control performance. Here we provide a framework for systematically investigating the impact of a motivational video-game setting on the training motivation, the task performance, and the transfer success in a task-switching training in middle-aged children (8-11 years of age). We manipulated both the type of training (low-demanding/single-task training vs. high-demanding/task-switching training) as well as the motivational setting (low-motivational/without video-game elements vs. high-motivational/with video-game elements) separately from another. The results indicated that the addition of game elements to a training setting enhanced the intrinsic interest in task practice, independently of the cognitive demands placed by the training type. In the task-switching group, the high-motivational training setting led to an additional enhancement of task and switching performance during the training phase right from the outset. These motivation-induced benefits projected onto the switching performance in a switching situation different from the trained one (near-transfer measurement). However, in structurally dissimilar cognitive tasks (far-transfer measurement), the motivational gains only transferred to the response dynamics (speed of processing). Hence, the motivational setting clearly had a positive impact on the training motivation and on the paradigm-specific task-switching abilities; it did not, however, consistently generalize on broad cognitive processes. These findings shed new light on the conflation of motivation and cognition in childhood and may help to refine guidelines for designing adequate training interventions.

No MeSH data available.


Related in: MedlinePlus