Limits...
Dissociable effects of game elements on motivation and cognition in a task-switching training in middle childhood.

Dörrenbächer S, Müller PM, Tröger J, Kray J - Front Psychol (2014)

Bottom Line: The results indicated that the addition of game elements to a training setting enhanced the intrinsic interest in task practice, independently of the cognitive demands placed by the training type.These motivation-induced benefits projected onto the switching performance in a switching situation different from the trained one (near-transfer measurement).Hence, the motivational setting clearly had a positive impact on the training motivation and on the paradigm-specific task-switching abilities; it did not, however, consistently generalize on broad cognitive processes.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Development of Language, Learning and Action, Saarland University Saarbrücken, Germany.

ABSTRACT
Although motivational reinforcers are often used to enhance the attractiveness of trainings of cognitive control in children, little is known about how such motivational manipulations of the setting contribute to separate gains in motivation and cognitive-control performance. Here we provide a framework for systematically investigating the impact of a motivational video-game setting on the training motivation, the task performance, and the transfer success in a task-switching training in middle-aged children (8-11 years of age). We manipulated both the type of training (low-demanding/single-task training vs. high-demanding/task-switching training) as well as the motivational setting (low-motivational/without video-game elements vs. high-motivational/with video-game elements) separately from another. The results indicated that the addition of game elements to a training setting enhanced the intrinsic interest in task practice, independently of the cognitive demands placed by the training type. In the task-switching group, the high-motivational training setting led to an additional enhancement of task and switching performance during the training phase right from the outset. These motivation-induced benefits projected onto the switching performance in a switching situation different from the trained one (near-transfer measurement). However, in structurally dissimilar cognitive tasks (far-transfer measurement), the motivational gains only transferred to the response dynamics (speed of processing). Hence, the motivational setting clearly had a positive impact on the training motivation and on the paradigm-specific task-switching abilities; it did not, however, consistently generalize on broad cognitive processes. These findings shed new light on the conflation of motivation and cognition in childhood and may help to refine guidelines for designing adequate training interventions.

No MeSH data available.


Related in: MedlinePlus

Training performance on mean latencies (ms) and error rates (%) (left panel) as well as on latency and error switching costs (right panel) as a function of Training Group (single-LM, single-HM, switching-LM, switching-HM) and Training Session (1,2,3,4). Error bars depict SE based on the group x session interaction comparing group conditions of the respective mixed ANOVA according to Jarmasz and Hollands (2009). Note that the selected variance estimators are not suited to compare session conditions.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4230167&req=5

Figure 6: Training performance on mean latencies (ms) and error rates (%) (left panel) as well as on latency and error switching costs (right panel) as a function of Training Group (single-LM, single-HM, switching-LM, switching-HM) and Training Session (1,2,3,4). Error bars depict SE based on the group x session interaction comparing group conditions of the respective mixed ANOVA according to Jarmasz and Hollands (2009). Note that the selected variance estimators are not suited to compare session conditions.

Mentions: Results on error rates revealed a main effect for Session, [F(3,150) = 12.04, p < 0.001, η2p = 0.19], indicating a general decrease of performance accuracy. Regarding the pairwise comparisons, we found neither group main effects nor nested modulations in the expected directions. Nevertheless, there was an unexpected effect for the motivational setting on the change of error rates, [F(1, 50) = 6.92, p < 0.05, η2p = 0.04], pointing in the opposite direction: as shown in Figure 6, groups with an HM-setting showed a larger increase of error rates from the first to the fourth training session. These motivational differences were large between the task-switching groups, [F(1, 50) = 8.41, p < 0.01, η2p = 0.05], while being unsubstantial between the single-task groups (p = 0.42). This result pattern pointed toward a potential speed-accuracy trade-off pronounced in the switching-HM group, which we controlled for in separate analyses (see below).


Dissociable effects of game elements on motivation and cognition in a task-switching training in middle childhood.

Dörrenbächer S, Müller PM, Tröger J, Kray J - Front Psychol (2014)

Training performance on mean latencies (ms) and error rates (%) (left panel) as well as on latency and error switching costs (right panel) as a function of Training Group (single-LM, single-HM, switching-LM, switching-HM) and Training Session (1,2,3,4). Error bars depict SE based on the group x session interaction comparing group conditions of the respective mixed ANOVA according to Jarmasz and Hollands (2009). Note that the selected variance estimators are not suited to compare session conditions.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4230167&req=5

Figure 6: Training performance on mean latencies (ms) and error rates (%) (left panel) as well as on latency and error switching costs (right panel) as a function of Training Group (single-LM, single-HM, switching-LM, switching-HM) and Training Session (1,2,3,4). Error bars depict SE based on the group x session interaction comparing group conditions of the respective mixed ANOVA according to Jarmasz and Hollands (2009). Note that the selected variance estimators are not suited to compare session conditions.
Mentions: Results on error rates revealed a main effect for Session, [F(3,150) = 12.04, p < 0.001, η2p = 0.19], indicating a general decrease of performance accuracy. Regarding the pairwise comparisons, we found neither group main effects nor nested modulations in the expected directions. Nevertheless, there was an unexpected effect for the motivational setting on the change of error rates, [F(1, 50) = 6.92, p < 0.05, η2p = 0.04], pointing in the opposite direction: as shown in Figure 6, groups with an HM-setting showed a larger increase of error rates from the first to the fourth training session. These motivational differences were large between the task-switching groups, [F(1, 50) = 8.41, p < 0.01, η2p = 0.05], while being unsubstantial between the single-task groups (p = 0.42). This result pattern pointed toward a potential speed-accuracy trade-off pronounced in the switching-HM group, which we controlled for in separate analyses (see below).

Bottom Line: The results indicated that the addition of game elements to a training setting enhanced the intrinsic interest in task practice, independently of the cognitive demands placed by the training type.These motivation-induced benefits projected onto the switching performance in a switching situation different from the trained one (near-transfer measurement).Hence, the motivational setting clearly had a positive impact on the training motivation and on the paradigm-specific task-switching abilities; it did not, however, consistently generalize on broad cognitive processes.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Development of Language, Learning and Action, Saarland University Saarbrücken, Germany.

ABSTRACT
Although motivational reinforcers are often used to enhance the attractiveness of trainings of cognitive control in children, little is known about how such motivational manipulations of the setting contribute to separate gains in motivation and cognitive-control performance. Here we provide a framework for systematically investigating the impact of a motivational video-game setting on the training motivation, the task performance, and the transfer success in a task-switching training in middle-aged children (8-11 years of age). We manipulated both the type of training (low-demanding/single-task training vs. high-demanding/task-switching training) as well as the motivational setting (low-motivational/without video-game elements vs. high-motivational/with video-game elements) separately from another. The results indicated that the addition of game elements to a training setting enhanced the intrinsic interest in task practice, independently of the cognitive demands placed by the training type. In the task-switching group, the high-motivational training setting led to an additional enhancement of task and switching performance during the training phase right from the outset. These motivation-induced benefits projected onto the switching performance in a switching situation different from the trained one (near-transfer measurement). However, in structurally dissimilar cognitive tasks (far-transfer measurement), the motivational gains only transferred to the response dynamics (speed of processing). Hence, the motivational setting clearly had a positive impact on the training motivation and on the paradigm-specific task-switching abilities; it did not, however, consistently generalize on broad cognitive processes. These findings shed new light on the conflation of motivation and cognition in childhood and may help to refine guidelines for designing adequate training interventions.

No MeSH data available.


Related in: MedlinePlus