Limits...
Live imaging of developmental processes in a living meristem of Davidia involucrata (Nyssaceae).

Jerominek M, Bull-Hereñu K, Arndt M, Claßen-Bockhoff R - Front Plant Sci (2014)

Bottom Line: The growing meristem was observed for 30 days, the longest live observation of a meristem achieved to date.D. involucrata exemplarily shows that live-ELM gives new insights into developmental processes of plants.In addition to morphogenetic questions such as the transition from vegetative to reproductive meristems or the absolute timing of ontogenetic processes, this method may also help to quantify cellular growth processes in the context of molecular physiology and developmental genetics studies.

View Article: PubMed Central - PubMed

Affiliation: Institut für Spezielle Botanik, Johannes Gutenberg-Universität Mainz, Germany.

ABSTRACT
Morphogenesis in plants is usually reconstructed by scanning electron microscopy and histology of meristematic structures. These techniques are destructive and require many samples to obtain a consecutive series of states. Unfortunately, using this methodology the absolute timing of growth and complete relative initiation of organs remain obscure. To overcome this limitation, an in vivo observational method based on Epi-Illumination Light Microscopy (ELM) was developed and tested with a male inflorescence meristem (floral unit) of the handkerchief tree Davidia involucrata Baill. (Nyssaceae). We asked whether the most basal flowers of this floral unit arise in a basipetal sequence or, alternatively, are delayed in their development. The growing meristem was observed for 30 days, the longest live observation of a meristem achieved to date. The sequence of primordium initiation indicates a later initiation of the most basal flowers and not earlier or simultaneously as SEM images could suggest. D. involucrata exemplarily shows that live-ELM gives new insights into developmental processes of plants. In addition to morphogenetic questions such as the transition from vegetative to reproductive meristems or the absolute timing of ontogenetic processes, this method may also help to quantify cellular growth processes in the context of molecular physiology and developmental genetics studies.

No MeSH data available.


Related in: MedlinePlus

Setup (A) and schematic diagram (B) of the automated arrangement. A branch of Davidia involucrata is placed in a staining dish with tap water and fixed with two styrofoam blocks (A, Close-up). The tip of the branch (meristem) is protected by a modified probe tube forming a moisture chamber (mc). The upper side is covered by a latex membrane (lm) that envelops the objective lens. The lower side is closed by the water level (dotted line). ar, Arduino Leonardo (microcontroller); dr, driver for stepper motor; lm, latex membrane; mc, moisture chamber; ti, timer remote control.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4230046&req=5

Figure 2: Setup (A) and schematic diagram (B) of the automated arrangement. A branch of Davidia involucrata is placed in a staining dish with tap water and fixed with two styrofoam blocks (A, Close-up). The tip of the branch (meristem) is protected by a modified probe tube forming a moisture chamber (mc). The upper side is covered by a latex membrane (lm) that envelops the objective lens. The lower side is closed by the water level (dotted line). ar, Arduino Leonardo (microcontroller); dr, driver for stepper motor; lm, latex membrane; mc, moisture chamber; ti, timer remote control.

Mentions: A FU meristem of D. involucrata was taken from a tree cultivated in the Botanical Garden at the University of Mainz, Germany. The meristem, located at the tip of a short branch, was dissected and mounted with styrofoam in a histological staining dish while the site of fracture was submerged in tap water (Figure 2). To prevent dehydration the meristem was directly covered by a modified probe tube (50 ml) that was used as moisture chamber. The lower side was closed by the water of the staining dish and the upper side was covered with a latex membrane that enveloped the objective lens. During observation, the water in the staining dish was checked and refilled twice a week.


Live imaging of developmental processes in a living meristem of Davidia involucrata (Nyssaceae).

Jerominek M, Bull-Hereñu K, Arndt M, Claßen-Bockhoff R - Front Plant Sci (2014)

Setup (A) and schematic diagram (B) of the automated arrangement. A branch of Davidia involucrata is placed in a staining dish with tap water and fixed with two styrofoam blocks (A, Close-up). The tip of the branch (meristem) is protected by a modified probe tube forming a moisture chamber (mc). The upper side is covered by a latex membrane (lm) that envelops the objective lens. The lower side is closed by the water level (dotted line). ar, Arduino Leonardo (microcontroller); dr, driver for stepper motor; lm, latex membrane; mc, moisture chamber; ti, timer remote control.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4230046&req=5

Figure 2: Setup (A) and schematic diagram (B) of the automated arrangement. A branch of Davidia involucrata is placed in a staining dish with tap water and fixed with two styrofoam blocks (A, Close-up). The tip of the branch (meristem) is protected by a modified probe tube forming a moisture chamber (mc). The upper side is covered by a latex membrane (lm) that envelops the objective lens. The lower side is closed by the water level (dotted line). ar, Arduino Leonardo (microcontroller); dr, driver for stepper motor; lm, latex membrane; mc, moisture chamber; ti, timer remote control.
Mentions: A FU meristem of D. involucrata was taken from a tree cultivated in the Botanical Garden at the University of Mainz, Germany. The meristem, located at the tip of a short branch, was dissected and mounted with styrofoam in a histological staining dish while the site of fracture was submerged in tap water (Figure 2). To prevent dehydration the meristem was directly covered by a modified probe tube (50 ml) that was used as moisture chamber. The lower side was closed by the water of the staining dish and the upper side was covered with a latex membrane that enveloped the objective lens. During observation, the water in the staining dish was checked and refilled twice a week.

Bottom Line: The growing meristem was observed for 30 days, the longest live observation of a meristem achieved to date.D. involucrata exemplarily shows that live-ELM gives new insights into developmental processes of plants.In addition to morphogenetic questions such as the transition from vegetative to reproductive meristems or the absolute timing of ontogenetic processes, this method may also help to quantify cellular growth processes in the context of molecular physiology and developmental genetics studies.

View Article: PubMed Central - PubMed

Affiliation: Institut für Spezielle Botanik, Johannes Gutenberg-Universität Mainz, Germany.

ABSTRACT
Morphogenesis in plants is usually reconstructed by scanning electron microscopy and histology of meristematic structures. These techniques are destructive and require many samples to obtain a consecutive series of states. Unfortunately, using this methodology the absolute timing of growth and complete relative initiation of organs remain obscure. To overcome this limitation, an in vivo observational method based on Epi-Illumination Light Microscopy (ELM) was developed and tested with a male inflorescence meristem (floral unit) of the handkerchief tree Davidia involucrata Baill. (Nyssaceae). We asked whether the most basal flowers of this floral unit arise in a basipetal sequence or, alternatively, are delayed in their development. The growing meristem was observed for 30 days, the longest live observation of a meristem achieved to date. The sequence of primordium initiation indicates a later initiation of the most basal flowers and not earlier or simultaneously as SEM images could suggest. D. involucrata exemplarily shows that live-ELM gives new insights into developmental processes of plants. In addition to morphogenetic questions such as the transition from vegetative to reproductive meristems or the absolute timing of ontogenetic processes, this method may also help to quantify cellular growth processes in the context of molecular physiology and developmental genetics studies.

No MeSH data available.


Related in: MedlinePlus