Limits...
Early malaria resurgence in pre-elimination areas in Kokap Subdistrict, Kulon Progo, Indonesia.

Murhandarwati EE, Fuad A, Nugraheni MD - Malar. J. (2014)

Bottom Line: However, at district level the situation is different.This study also aims to describe the community perceptions and health services delivery situation that contribute to this case.Two-hundred and twenty-six cases during an outbreak (May 2011 to April 2012) were geocoded by household addresses using a geographic information system (GIS) technique and clusters were identified by SaTScan software analysis (Arc GIS 10.1).

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Parasitology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia. herdiana.elsa@gmail.com.

ABSTRACT

Background: Indonesia is among those countries committed to malaria eradication, with a continuously decreasing incidence of malaria. However, at district level the situation is different. This study presents a case of malaria resurgence Kokap Subdistrict of the Kulon Progo District in Yogyakarta Province, Java after five years of low endemicity. This study also aims to describe the community perceptions and health services delivery situation that contribute to this case.

Methods: All malaria cases (2007-2011) in Kulon Progo District were stratified to annual parasite incidence (API). Two-hundred and twenty-six cases during an outbreak (May 2011 to April 2012) were geocoded by household addresses using a geographic information system (GIS) technique and clusters were identified by SaTScan software analysis (Arc GIS 10.1). Purposive random sampling was conducted on respondents living inside the clusters to identify community perceptions and behaviour related to malaria. Interviews were conducted with malaria health officers to understand the challenges of malaria surveillance and control.

Results: After experiencing three consecutive years with API less than 1 per thousand, malaria in Kokap subdistrict increased almost ten times higher than API in the district level and five times higher than national API. Malaria cases were found in all five villages in 2012. One primary and two secondary malaria clusters in Hargotirto and Kalirejo villages were identified during the 2011-2012 outbreak. Most of the respondents were positively aware with malaria signs and activities of health workers to prevent malaria, although some social economic activities could not be hindered. Return transmigrants or migrant workers entering to their villages, reduced numbers of village malaria workers and a surge in malaria cases in the neighbouring district contributed to the resurgence.

Conclusion: Community perception, awareness and participation could constitute a solid foundation for malaria elimination in Kokap. However, decreasing number of village malaria workers and ineffective communication between primary health centres (PHCs) within boundary areas with similar malaria problems needs attention. Decentralization policy was allegedly the reason for the less integrated malaria control between districts, especially in the cross border areas. Malaria resurgence needs attention particularly when it occurs in an area that is entering the elimination phase.

Show MeSH

Related in: MedlinePlus

Lithology, landform, complex slopes and land cover maps on topographic background of Kokaps subdistrict, KulonProgo, Yogyakarta in 2012. Lithology of Kokap is dominated by andesite rock type (A). Landform of Menoreh Hills is hilly to mountainous. It consists of many valleys and ridges that form many streams dominated by denudasional mountains and hills (B). Complex slope of Kokap area which is dominated by very steep, steep and hilly (moderately steep) complex slope (C). Land cover of Kokap, existing land cover consists mainly of forest, mixed gardens, cropland and, shrubs and bush (D).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4230011&req=5

Figure 2: Lithology, landform, complex slopes and land cover maps on topographic background of Kokaps subdistrict, KulonProgo, Yogyakarta in 2012. Lithology of Kokap is dominated by andesite rock type (A). Landform of Menoreh Hills is hilly to mountainous. It consists of many valleys and ridges that form many streams dominated by denudasional mountains and hills (B). Complex slope of Kokap area which is dominated by very steep, steep and hilly (moderately steep) complex slope (C). Land cover of Kokap, existing land cover consists mainly of forest, mixed gardens, cropland and, shrubs and bush (D).

Mentions: Kokap is dominated by andesite rock type (see geological map) whereas a minor part in southeastern (Sentolo formation) is arranged by aglomerat and napal (Figure 2A). Topography of the Menoreh Hills is hilly to mountainous and consists of many valleys and ridges that form many streams (Figure 2B). Kokap area is dominated by denuded mountains and hills and only a small area on the southeast slopes of the foothills is colluvial (Figure 2C). The slope of the land in Kokap area is dominated by very steep, steep and hilly (moderately steep) complex slope. Its geomorphology indicates intensive erosions causing soil layer to become thin (resulting in soil infertility) and also creating rock outcrops. Water inlets occur, particularly in the rainy season. Existing land in the study area consists mainly of forest, mixed gardens, cropland, and shrubs and bush (Figure 2D). The vegetation density might preserve temperature and humidity, particularly not fluctuating sharply, which maintains the ideal environment for mosquito breeding and resting places.


Early malaria resurgence in pre-elimination areas in Kokap Subdistrict, Kulon Progo, Indonesia.

Murhandarwati EE, Fuad A, Nugraheni MD - Malar. J. (2014)

Lithology, landform, complex slopes and land cover maps on topographic background of Kokaps subdistrict, KulonProgo, Yogyakarta in 2012. Lithology of Kokap is dominated by andesite rock type (A). Landform of Menoreh Hills is hilly to mountainous. It consists of many valleys and ridges that form many streams dominated by denudasional mountains and hills (B). Complex slope of Kokap area which is dominated by very steep, steep and hilly (moderately steep) complex slope (C). Land cover of Kokap, existing land cover consists mainly of forest, mixed gardens, cropland and, shrubs and bush (D).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4230011&req=5

Figure 2: Lithology, landform, complex slopes and land cover maps on topographic background of Kokaps subdistrict, KulonProgo, Yogyakarta in 2012. Lithology of Kokap is dominated by andesite rock type (A). Landform of Menoreh Hills is hilly to mountainous. It consists of many valleys and ridges that form many streams dominated by denudasional mountains and hills (B). Complex slope of Kokap area which is dominated by very steep, steep and hilly (moderately steep) complex slope (C). Land cover of Kokap, existing land cover consists mainly of forest, mixed gardens, cropland and, shrubs and bush (D).
Mentions: Kokap is dominated by andesite rock type (see geological map) whereas a minor part in southeastern (Sentolo formation) is arranged by aglomerat and napal (Figure 2A). Topography of the Menoreh Hills is hilly to mountainous and consists of many valleys and ridges that form many streams (Figure 2B). Kokap area is dominated by denuded mountains and hills and only a small area on the southeast slopes of the foothills is colluvial (Figure 2C). The slope of the land in Kokap area is dominated by very steep, steep and hilly (moderately steep) complex slope. Its geomorphology indicates intensive erosions causing soil layer to become thin (resulting in soil infertility) and also creating rock outcrops. Water inlets occur, particularly in the rainy season. Existing land in the study area consists mainly of forest, mixed gardens, cropland, and shrubs and bush (Figure 2D). The vegetation density might preserve temperature and humidity, particularly not fluctuating sharply, which maintains the ideal environment for mosquito breeding and resting places.

Bottom Line: However, at district level the situation is different.This study also aims to describe the community perceptions and health services delivery situation that contribute to this case.Two-hundred and twenty-six cases during an outbreak (May 2011 to April 2012) were geocoded by household addresses using a geographic information system (GIS) technique and clusters were identified by SaTScan software analysis (Arc GIS 10.1).

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Parasitology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia. herdiana.elsa@gmail.com.

ABSTRACT

Background: Indonesia is among those countries committed to malaria eradication, with a continuously decreasing incidence of malaria. However, at district level the situation is different. This study presents a case of malaria resurgence Kokap Subdistrict of the Kulon Progo District in Yogyakarta Province, Java after five years of low endemicity. This study also aims to describe the community perceptions and health services delivery situation that contribute to this case.

Methods: All malaria cases (2007-2011) in Kulon Progo District were stratified to annual parasite incidence (API). Two-hundred and twenty-six cases during an outbreak (May 2011 to April 2012) were geocoded by household addresses using a geographic information system (GIS) technique and clusters were identified by SaTScan software analysis (Arc GIS 10.1). Purposive random sampling was conducted on respondents living inside the clusters to identify community perceptions and behaviour related to malaria. Interviews were conducted with malaria health officers to understand the challenges of malaria surveillance and control.

Results: After experiencing three consecutive years with API less than 1 per thousand, malaria in Kokap subdistrict increased almost ten times higher than API in the district level and five times higher than national API. Malaria cases were found in all five villages in 2012. One primary and two secondary malaria clusters in Hargotirto and Kalirejo villages were identified during the 2011-2012 outbreak. Most of the respondents were positively aware with malaria signs and activities of health workers to prevent malaria, although some social economic activities could not be hindered. Return transmigrants or migrant workers entering to their villages, reduced numbers of village malaria workers and a surge in malaria cases in the neighbouring district contributed to the resurgence.

Conclusion: Community perception, awareness and participation could constitute a solid foundation for malaria elimination in Kokap. However, decreasing number of village malaria workers and ineffective communication between primary health centres (PHCs) within boundary areas with similar malaria problems needs attention. Decentralization policy was allegedly the reason for the less integrated malaria control between districts, especially in the cross border areas. Malaria resurgence needs attention particularly when it occurs in an area that is entering the elimination phase.

Show MeSH
Related in: MedlinePlus