Limits...
Enhanced production and characterization of a solvent stable amylase from solvent tolerant Bacillus tequilensis RG-01: thermostable and surfactant resistant.

Tiwari S, Shukla N, Mishra P, Gaur R - ScientificWorldJournal (2014)

Bottom Line: The enzyme was showed it 100% activity at 55°C and pH 7.0 with 119% and 127% stability at 55°C and pH 7.0, respectively.The enzyme was also stable in the presence of SDS, Tween-40, Tween-60, and Tween-80 (1%) and was found stimulatory effect, respectively.Only Triton-X-100 showed a moderate inhibitory effect (5%) on amylase activity.

View Article: PubMed Central - PubMed

Affiliation: Department of Microbiology, Centre of Excellence, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh 224001, India.

ABSTRACT
Ten bacterial strains isolated from the soil samples in the presence of cyclohexane were screened for amylase production. Among them, culture RG-01 was adjudged as the best amylase producer and was identified as Bacillus tequilensis from MTCC, Chandigarh. The isolate showed maximum amylase production (8100 U/mL) in the presence of starch, peptone, and Ca(2+) ions at 55°C pH 7.0 within 24 h of incubation. The enzyme was stable in the presence of n-dodecane, isooctane, n-decane, xylene, toluene, n-hexane, n-butanol, and cyclohexane, respectively. The presence of benzene, methanol, and ethanol marginally reduced the amylase stability, respectively. The enzyme was showed it 100% activity at 55°C and pH 7.0 with 119% and 127% stability at 55°C and pH 7.0, respectively. The enzyme was also stable in the presence of SDS, Tween-40, Tween-60, and Tween-80 (1%) and was found stimulatory effect, respectively. Only Triton-X-100 showed a moderate inhibitory effect (5%) on amylase activity. This isolate (Bacillus tequilensis RG-01) may be useful in several industrial applications owing to its thermotolerant and organic solvents and surfactants resistance characteristics.

Show MeSH

Related in: MedlinePlus

Effect of different concentration of peptone on amylase production. Test flasks contained different concentration of peptone (0.1–0.6%, w/v) in the medium. The flasks were inoculated with culture and incubated at 55°C for 24 h at pH 7.0. Error bars presented are mean values of ±standard deviation of triplicates of three independent experiments.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4226188&req=5

fig9: Effect of different concentration of peptone on amylase production. Test flasks contained different concentration of peptone (0.1–0.6%, w/v) in the medium. The flasks were inoculated with culture and incubated at 55°C for 24 h at pH 7.0. Error bars presented are mean values of ±standard deviation of triplicates of three independent experiments.

Mentions: Different concentrations of peptone (0.1, 0.2, 0.3, 0.4, 0.5, and 0.6%, w/v) in the medium were also tested for amylase production at the same growth condition at which nitrogen sources were evaluated. Bacteria showed higher enzyme production (6200 U/mL) at 0.3% peptone concentration, further increase in concentration, reduced enzyme production (Figure 9).


Enhanced production and characterization of a solvent stable amylase from solvent tolerant Bacillus tequilensis RG-01: thermostable and surfactant resistant.

Tiwari S, Shukla N, Mishra P, Gaur R - ScientificWorldJournal (2014)

Effect of different concentration of peptone on amylase production. Test flasks contained different concentration of peptone (0.1–0.6%, w/v) in the medium. The flasks were inoculated with culture and incubated at 55°C for 24 h at pH 7.0. Error bars presented are mean values of ±standard deviation of triplicates of three independent experiments.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4226188&req=5

fig9: Effect of different concentration of peptone on amylase production. Test flasks contained different concentration of peptone (0.1–0.6%, w/v) in the medium. The flasks were inoculated with culture and incubated at 55°C for 24 h at pH 7.0. Error bars presented are mean values of ±standard deviation of triplicates of three independent experiments.
Mentions: Different concentrations of peptone (0.1, 0.2, 0.3, 0.4, 0.5, and 0.6%, w/v) in the medium were also tested for amylase production at the same growth condition at which nitrogen sources were evaluated. Bacteria showed higher enzyme production (6200 U/mL) at 0.3% peptone concentration, further increase in concentration, reduced enzyme production (Figure 9).

Bottom Line: The enzyme was showed it 100% activity at 55°C and pH 7.0 with 119% and 127% stability at 55°C and pH 7.0, respectively.The enzyme was also stable in the presence of SDS, Tween-40, Tween-60, and Tween-80 (1%) and was found stimulatory effect, respectively.Only Triton-X-100 showed a moderate inhibitory effect (5%) on amylase activity.

View Article: PubMed Central - PubMed

Affiliation: Department of Microbiology, Centre of Excellence, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh 224001, India.

ABSTRACT
Ten bacterial strains isolated from the soil samples in the presence of cyclohexane were screened for amylase production. Among them, culture RG-01 was adjudged as the best amylase producer and was identified as Bacillus tequilensis from MTCC, Chandigarh. The isolate showed maximum amylase production (8100 U/mL) in the presence of starch, peptone, and Ca(2+) ions at 55°C pH 7.0 within 24 h of incubation. The enzyme was stable in the presence of n-dodecane, isooctane, n-decane, xylene, toluene, n-hexane, n-butanol, and cyclohexane, respectively. The presence of benzene, methanol, and ethanol marginally reduced the amylase stability, respectively. The enzyme was showed it 100% activity at 55°C and pH 7.0 with 119% and 127% stability at 55°C and pH 7.0, respectively. The enzyme was also stable in the presence of SDS, Tween-40, Tween-60, and Tween-80 (1%) and was found stimulatory effect, respectively. Only Triton-X-100 showed a moderate inhibitory effect (5%) on amylase activity. This isolate (Bacillus tequilensis RG-01) may be useful in several industrial applications owing to its thermotolerant and organic solvents and surfactants resistance characteristics.

Show MeSH
Related in: MedlinePlus