Limits...
The complete mitochondrial genome of the scab mite Psoroptes cuniculi (Arthropoda: Arachnida) provides insights into Acari phylogeny.

Gu XB, Liu GH, Song HQ, Liu TY, Yang GY, Zhu XQ - Parasit Vectors (2014)

Bottom Line: Phylogenetic analyses using concatenated amino acid sequences of 12 protein-coding genes, with three different computational algorithms (BI, ML and MP), showed the division of subclass Acari into two superorders, supported the monophylies of the both superorders Parasitiformes and Acariformes; and the three orders Ixodida and Mesostigmata and Astigmata, but rejected the monophyly of the order Prostigmata.The mt genome of P. cuniculi represents the first mt genome of any member of the family Psoroptidae.Analysis of mt genome sequences in the present study has provided new insights into the phylogenetic relationships among several major lineages of Acari species.

View Article: PubMed Central - HTML - PubMed

Affiliation: State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, P R China. liuguohua5202008@163.com.

ABSTRACT

Background: Limited available sequence information has greatly impeded population genetics, phylogenetics and systematics studies in the subclass Acari (mites and ticks). Mitochondrial (mt) DNA is well known to provide genetic markers for investigations in these areas, but complete mt genomic data have been lacking for many Acari species. Herein, we present the complete mt genome of the scab mite Psoroptes cuniculi.

Methods: P. cuniculi was collected from a naturally infected New Zealand white rabbit from China and identified by morphological criteria. The complete mt genome of P. cuniculi was amplified by PCR and then sequenced. The relationships of this scab mite with selected members of the Acari were assessed by phylogenetic analysis of concatenated amino acid sequence datasets by Bayesian inference (BI), maximum likelihood (ML) and maximum parsimony (MP).

Results: This mt genome (14,247 bp) is circular and consists of 37 genes, including 13 genes for proteins, 22 genes for tRNA, 2 genes for rRNA. The gene arrangement in mt genome of P. cuniculi is the same as those of Dermatophagoides farinae (Pyroglyphidae) and Aleuroglyphus ovatus (Acaridae), but distinct from those of Steganacarus magnus (Steganacaridae) and Panonychus citri (Tetranychidae). Phylogenetic analyses using concatenated amino acid sequences of 12 protein-coding genes, with three different computational algorithms (BI, ML and MP), showed the division of subclass Acari into two superorders, supported the monophylies of the both superorders Parasitiformes and Acariformes; and the three orders Ixodida and Mesostigmata and Astigmata, but rejected the monophyly of the order Prostigmata.

Conclusions: The mt genome of P. cuniculi represents the first mt genome of any member of the family Psoroptidae. Analysis of mt genome sequences in the present study has provided new insights into the phylogenetic relationships among several major lineages of Acari species.

Show MeSH

Related in: MedlinePlus

Phylogenetic relationships among 51 species of Acari inferred from maximum parsimony (MP) of deduced amino acid sequences of 12 mitochondrial proteins.Centruroides limpidus (GenBank accession number NC_006896) was used as the outgroup. Bootstrapping frequency (Bf) values were indicated at nodes.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4223567&req=5

Figure 5: Phylogenetic relationships among 51 species of Acari inferred from maximum parsimony (MP) of deduced amino acid sequences of 12 mitochondrial proteins.Centruroides limpidus (GenBank accession number NC_006896) was used as the outgroup. Bootstrapping frequency (Bf) values were indicated at nodes.

Mentions: Of the 51 Acari species included in the phylogenetic analyses in this study, 35 species belonged to the superorder Parasitiformes while 16 belonged to the superorder Acariformes. Both superorders Parasitiformes and Acariformes were monophyletic in all of the trees inferred by the BI, ML and MP methods. The monophyly of the superorder Parasitiformes was strongly supported with a Bpp of 1 in BI analyses (Figure 3), a Bf of 81% in ML analyses (Figure 4), and a Bf of 82% in MP analyses (Figure 5). The monophyly of the superorder Acariformes was strongly supported in BI and ML analyses (Bpp = 1, Figure 3; Bf = 100%, Figure 4), and was moderately supported in MP analysis (Bf = 97%, Figure 5). The 35 species of ticks in the superorder Parasitiformes included in this study were from two orders: Ixodida (32 species) and Mesostigmata (3 species). The monophyly of the order Ixodida was strongly supported in BI and ML analyses (Bpp = 1, Figure 3; Bf = 95%, Figure 4), but was weakly supported in MP analysis (Bf = 46%, Figure 5). The Mesostigmata were monophyletic with strong support in BI analysis (Bpp = 1, Figure 3), and was moderately supported in ML analysis (Bf = 81%, Figure 4), and weakly supported in MP analysis (Bf = 56%, Figure 5). Of the 16 species of mites in the superorder Acariformes, 4 species were from the order Astigmata, one species from the order Oribatida and 11 species from the order Prostigmata. The Astigmata was monophyletic with strong support in all of the three phylogenetic analyses (Bpp = 1, Figure 3; Bf = 100%, Figure 4; Bf = 100%, Figure 5). However, the Prostigmata was not monophyletic in all of the three phylogenetic analyses in the present study (Figures 3, 4 and 5). The Prostigmata was paraphyletic with respect to the family Tetranychidae. Four species from the Tetranychidae of the Prostigmata were more closely related to families Steganacaridae (order Oribatida), Acaridae, Psoroptidae and Pyroglyphidae (order Astigmata) than they were to the other two families (Trombiculidae and Unionicolidae) of the order Prostigmata. The close relationship between these species of the Tetranychidae and Steganacaridae was strongly supported in BI analysis (Bpp = 1, Figure 3), and was moderately supported in ML and MP analyses (Bf = 60%, Figure 4; Bf = 74%, Figure 5). In addition to the Prostigmata, four families of the orders Astigmata and Oribatida were also represented in our analyses: Pyroglyphidae (2 species), Psoroptidae (1 species), Acaridae (1 species) and Steganacaridae (1 species). The Pyroglyphidae was monophyletic with strong support in all of the three phylogenetic analyses in this study (Bpp = 1, Figure 3; Bf = 94%, Figure 4; Bf = 91%, Figure 5). Of the 32 species of ticks in the Ixodida, 21 species were from the family Ixodidae (hard ticks), 10 species from the family Argasidae (soft ticks) and one species from the family Nuttalliellidae. The two families Ixodidae and Argasidae were monophyletic with strong support in BI analysis (Bpp = 1, Figure 3), ML analysis (Bf = 100%, Figure 4) and MP analysis (Bf > 99%, Figure 5). The four species of the genus Amblyomma within Ixodidae were included in this study. These results indicated that Amblyomma is paraphyletic with strong support in BI analysis (Figure 3), and is moderately supported in ML and MP analyses (Figures 3 and 4).


The complete mitochondrial genome of the scab mite Psoroptes cuniculi (Arthropoda: Arachnida) provides insights into Acari phylogeny.

Gu XB, Liu GH, Song HQ, Liu TY, Yang GY, Zhu XQ - Parasit Vectors (2014)

Phylogenetic relationships among 51 species of Acari inferred from maximum parsimony (MP) of deduced amino acid sequences of 12 mitochondrial proteins.Centruroides limpidus (GenBank accession number NC_006896) was used as the outgroup. Bootstrapping frequency (Bf) values were indicated at nodes.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4223567&req=5

Figure 5: Phylogenetic relationships among 51 species of Acari inferred from maximum parsimony (MP) of deduced amino acid sequences of 12 mitochondrial proteins.Centruroides limpidus (GenBank accession number NC_006896) was used as the outgroup. Bootstrapping frequency (Bf) values were indicated at nodes.
Mentions: Of the 51 Acari species included in the phylogenetic analyses in this study, 35 species belonged to the superorder Parasitiformes while 16 belonged to the superorder Acariformes. Both superorders Parasitiformes and Acariformes were monophyletic in all of the trees inferred by the BI, ML and MP methods. The monophyly of the superorder Parasitiformes was strongly supported with a Bpp of 1 in BI analyses (Figure 3), a Bf of 81% in ML analyses (Figure 4), and a Bf of 82% in MP analyses (Figure 5). The monophyly of the superorder Acariformes was strongly supported in BI and ML analyses (Bpp = 1, Figure 3; Bf = 100%, Figure 4), and was moderately supported in MP analysis (Bf = 97%, Figure 5). The 35 species of ticks in the superorder Parasitiformes included in this study were from two orders: Ixodida (32 species) and Mesostigmata (3 species). The monophyly of the order Ixodida was strongly supported in BI and ML analyses (Bpp = 1, Figure 3; Bf = 95%, Figure 4), but was weakly supported in MP analysis (Bf = 46%, Figure 5). The Mesostigmata were monophyletic with strong support in BI analysis (Bpp = 1, Figure 3), and was moderately supported in ML analysis (Bf = 81%, Figure 4), and weakly supported in MP analysis (Bf = 56%, Figure 5). Of the 16 species of mites in the superorder Acariformes, 4 species were from the order Astigmata, one species from the order Oribatida and 11 species from the order Prostigmata. The Astigmata was monophyletic with strong support in all of the three phylogenetic analyses (Bpp = 1, Figure 3; Bf = 100%, Figure 4; Bf = 100%, Figure 5). However, the Prostigmata was not monophyletic in all of the three phylogenetic analyses in the present study (Figures 3, 4 and 5). The Prostigmata was paraphyletic with respect to the family Tetranychidae. Four species from the Tetranychidae of the Prostigmata were more closely related to families Steganacaridae (order Oribatida), Acaridae, Psoroptidae and Pyroglyphidae (order Astigmata) than they were to the other two families (Trombiculidae and Unionicolidae) of the order Prostigmata. The close relationship between these species of the Tetranychidae and Steganacaridae was strongly supported in BI analysis (Bpp = 1, Figure 3), and was moderately supported in ML and MP analyses (Bf = 60%, Figure 4; Bf = 74%, Figure 5). In addition to the Prostigmata, four families of the orders Astigmata and Oribatida were also represented in our analyses: Pyroglyphidae (2 species), Psoroptidae (1 species), Acaridae (1 species) and Steganacaridae (1 species). The Pyroglyphidae was monophyletic with strong support in all of the three phylogenetic analyses in this study (Bpp = 1, Figure 3; Bf = 94%, Figure 4; Bf = 91%, Figure 5). Of the 32 species of ticks in the Ixodida, 21 species were from the family Ixodidae (hard ticks), 10 species from the family Argasidae (soft ticks) and one species from the family Nuttalliellidae. The two families Ixodidae and Argasidae were monophyletic with strong support in BI analysis (Bpp = 1, Figure 3), ML analysis (Bf = 100%, Figure 4) and MP analysis (Bf > 99%, Figure 5). The four species of the genus Amblyomma within Ixodidae were included in this study. These results indicated that Amblyomma is paraphyletic with strong support in BI analysis (Figure 3), and is moderately supported in ML and MP analyses (Figures 3 and 4).

Bottom Line: Phylogenetic analyses using concatenated amino acid sequences of 12 protein-coding genes, with three different computational algorithms (BI, ML and MP), showed the division of subclass Acari into two superorders, supported the monophylies of the both superorders Parasitiformes and Acariformes; and the three orders Ixodida and Mesostigmata and Astigmata, but rejected the monophyly of the order Prostigmata.The mt genome of P. cuniculi represents the first mt genome of any member of the family Psoroptidae.Analysis of mt genome sequences in the present study has provided new insights into the phylogenetic relationships among several major lineages of Acari species.

View Article: PubMed Central - HTML - PubMed

Affiliation: State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, P R China. liuguohua5202008@163.com.

ABSTRACT

Background: Limited available sequence information has greatly impeded population genetics, phylogenetics and systematics studies in the subclass Acari (mites and ticks). Mitochondrial (mt) DNA is well known to provide genetic markers for investigations in these areas, but complete mt genomic data have been lacking for many Acari species. Herein, we present the complete mt genome of the scab mite Psoroptes cuniculi.

Methods: P. cuniculi was collected from a naturally infected New Zealand white rabbit from China and identified by morphological criteria. The complete mt genome of P. cuniculi was amplified by PCR and then sequenced. The relationships of this scab mite with selected members of the Acari were assessed by phylogenetic analysis of concatenated amino acid sequence datasets by Bayesian inference (BI), maximum likelihood (ML) and maximum parsimony (MP).

Results: This mt genome (14,247 bp) is circular and consists of 37 genes, including 13 genes for proteins, 22 genes for tRNA, 2 genes for rRNA. The gene arrangement in mt genome of P. cuniculi is the same as those of Dermatophagoides farinae (Pyroglyphidae) and Aleuroglyphus ovatus (Acaridae), but distinct from those of Steganacarus magnus (Steganacaridae) and Panonychus citri (Tetranychidae). Phylogenetic analyses using concatenated amino acid sequences of 12 protein-coding genes, with three different computational algorithms (BI, ML and MP), showed the division of subclass Acari into two superorders, supported the monophylies of the both superorders Parasitiformes and Acariformes; and the three orders Ixodida and Mesostigmata and Astigmata, but rejected the monophyly of the order Prostigmata.

Conclusions: The mt genome of P. cuniculi represents the first mt genome of any member of the family Psoroptidae. Analysis of mt genome sequences in the present study has provided new insights into the phylogenetic relationships among several major lineages of Acari species.

Show MeSH
Related in: MedlinePlus