Limits...
Hyper-brain networks support romantic kissing in humans.

Müller V, Lindenberger U - PLoS ONE (2014)

Bottom Line: Coordinated social interaction is associated with, and presumably dependent on, oscillatory couplings within and between brains, which, in turn, consist of an interplay across different frequencies.Network strengths were higher and characteristic path lengths shorter when individuals were kissing each other than when they were kissing their own hand.We conclude that hyper-brain networks based on CFC may capture neural mechanisms that support interpersonally coordinated voluntary action and bonding behavior.

View Article: PubMed Central - PubMed

Affiliation: Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.

ABSTRACT
Coordinated social interaction is associated with, and presumably dependent on, oscillatory couplings within and between brains, which, in turn, consist of an interplay across different frequencies. Here, we introduce a method of network construction based on the cross-frequency coupling (CFC) and examine whether coordinated social interaction is associated with CFC within and between brains. Specifically, we compare the electroencephalograms (EEG) of 15 heterosexual couples during romantic kissing to kissing one's own hand, and to kissing one another while performing silent arithmetic. Using graph-theory methods, we identify theta-alpha hyper-brain networks, with alpha serving a cleaving or pacemaker function. Network strengths were higher and characteristic path lengths shorter when individuals were kissing each other than when they were kissing their own hand. In both partner-oriented kissing conditions, greater strength and shorter path length for 5-Hz oscillation nodes correlated reliably with greater partner-oriented kissing satisfaction. This correlation was especially strong for inter-brain connections in both partner-oriented kissing conditions but not during kissing one's own hand. Kissing quality assessed after the kissing with silent arithmetic correlated reliably with intra-brain strength of 10-Hz oscillation nodes during both romantic kissing and kissing with silent arithmetic. We conclude that hyper-brain networks based on CFC may capture neural mechanisms that support interpersonally coordinated voluntary action and bonding behavior.

No MeSH data available.


Related in: MedlinePlus

Modular organization of hyper-brain networks under the three kissing conditions.A: Scatterplots of Z-P parameter space with corresponding role regions (cf. the. 5). Different modules are coded with color of the circles. B: Circle modularity structure. The size of the circle (module) represents the common connectivity strength of the module, and connectivity strength between the modules is coded by line thickness. In both cases, the out-strengths were used for calculation. C: Modular organization of the female and the male brains. Each electrode contains six nodes representing different oscillation frequencies (5, 10, 20, 30, 40, and 60 Hz) in clockwise order, beginning from the top. The size of the circle corresponds to the out-strength of the node, and modules are represented by color, which is the same as in A and B. D: Within-brain connections in the female and the male brains, correspondingly. Coupling strength range from blue (low coupling) to red (high coupling). E: Between-brain connections between the female and the male brains. Coupling strength range from blue (low coupling) to red (high coupling).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4222975&req=5

pone-0112080-g007: Modular organization of hyper-brain networks under the three kissing conditions.A: Scatterplots of Z-P parameter space with corresponding role regions (cf. the. 5). Different modules are coded with color of the circles. B: Circle modularity structure. The size of the circle (module) represents the common connectivity strength of the module, and connectivity strength between the modules is coded by line thickness. In both cases, the out-strengths were used for calculation. C: Modular organization of the female and the male brains. Each electrode contains six nodes representing different oscillation frequencies (5, 10, 20, 30, 40, and 60 Hz) in clockwise order, beginning from the top. The size of the circle corresponds to the out-strength of the node, and modules are represented by color, which is the same as in A and B. D: Within-brain connections in the female and the male brains, correspondingly. Coupling strength range from blue (low coupling) to red (high coupling). E: Between-brain connections between the female and the male brains. Coupling strength range from blue (low coupling) to red (high coupling).

Mentions: Figure 7 displays the structure of the Z-P parameter space of a kissing couple under the three kissing conditions, with the nodes belonging to different modules coded by colors. It can be seen that most of the connector and also peripheral hubs share the same two or three largest modules in the network (Fig. 7A). In most cases of the kissing couples investigated in the study, the largest module represents the aforementioned theta-alpha subnetwork. This module also has the strongest connections to the other modules (Fig. 7B). However, a more thorough view on the modularity structure of the kissing couple presented in Figure 7 indicates that the modular organization of hyper-brain networks have a more complex structure (see Fig. 7C). During RK, five out of nine (in total) modules (marked in blue, red, green, yellow, and aquamarine) are relatively large and contain alpha-oscillation nodes together with other frequency nodes distributed across the two brains. The blue module shares theta- and alpha-frequency nodes in the two brains and represents the above-mentioned theta-alpha subnetwork. Furthermore, fronto-temporal alpha-frequency nodes in male brain share the beta-frequency nodes distributed across the female brain in the common module marked in red. The yellow module shares the frontal (and one occipital) alpha-frequency nodes in the male brain with 30-Hz-oscillation nodes distributed across the female brain. The green and aquamarine modules belong practically to the female brain and bind together alpha and gamma oscillations in the female brain. All this leads to a very intertwined hyper-brain structure during RK. During K-SA, there are two (marked in blue and red) out of seven (in total) largest modules, whereby all the nodes in the female brain belong to these two largest modules and share these modules with alpha-frequency nodes in the male brain. Overall, these two modules represent two very strong hyper-brain subnetworks: (i) alpha-gamma subnetwork (blue) and (ii) theta-alpha-beta subnetwork (red). During HK, there are two large modules (marked in blue and red) that share alpha-frequency nodes in the male brain with those of the female brain, whereby all the frequencies, with exception of 60-Hz oscillations in the female brain, join in these two modules; moreover, the nodes belonging to the first largest module (marked in blue) lie in the fronto-central regions in both the female and male brains, whereas the nodes from the second largest module (marked in red) are localized in the temporal and parieto-occipital regions, also in both brains. It thus appears that hyper-brain networks in kissing couples have a complex modular organization, in which alpha-frequency oscillations and their subnetworks, especially the theta-alpha subnetwork, play a crucial role. Figures 7D and 7E show the strongest connections within and between a couple’s brains, respectively. It should be noted here that intra-brain networks based on CFC have very strong large-scale connections binding distributed cell assemblies, especially between the frontal and parieto-occipital areas. These regions are also strongly interconnected or synchronized between the brains. Inter-brain coupling generally reach out from the frontal regions of one partner to the parieto-occipital or central regions of the other partner and vice versa, whereas frontal-to-frontal connections are mostly reduced or attenuated.


Hyper-brain networks support romantic kissing in humans.

Müller V, Lindenberger U - PLoS ONE (2014)

Modular organization of hyper-brain networks under the three kissing conditions.A: Scatterplots of Z-P parameter space with corresponding role regions (cf. the. 5). Different modules are coded with color of the circles. B: Circle modularity structure. The size of the circle (module) represents the common connectivity strength of the module, and connectivity strength between the modules is coded by line thickness. In both cases, the out-strengths were used for calculation. C: Modular organization of the female and the male brains. Each electrode contains six nodes representing different oscillation frequencies (5, 10, 20, 30, 40, and 60 Hz) in clockwise order, beginning from the top. The size of the circle corresponds to the out-strength of the node, and modules are represented by color, which is the same as in A and B. D: Within-brain connections in the female and the male brains, correspondingly. Coupling strength range from blue (low coupling) to red (high coupling). E: Between-brain connections between the female and the male brains. Coupling strength range from blue (low coupling) to red (high coupling).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4222975&req=5

pone-0112080-g007: Modular organization of hyper-brain networks under the three kissing conditions.A: Scatterplots of Z-P parameter space with corresponding role regions (cf. the. 5). Different modules are coded with color of the circles. B: Circle modularity structure. The size of the circle (module) represents the common connectivity strength of the module, and connectivity strength between the modules is coded by line thickness. In both cases, the out-strengths were used for calculation. C: Modular organization of the female and the male brains. Each electrode contains six nodes representing different oscillation frequencies (5, 10, 20, 30, 40, and 60 Hz) in clockwise order, beginning from the top. The size of the circle corresponds to the out-strength of the node, and modules are represented by color, which is the same as in A and B. D: Within-brain connections in the female and the male brains, correspondingly. Coupling strength range from blue (low coupling) to red (high coupling). E: Between-brain connections between the female and the male brains. Coupling strength range from blue (low coupling) to red (high coupling).
Mentions: Figure 7 displays the structure of the Z-P parameter space of a kissing couple under the three kissing conditions, with the nodes belonging to different modules coded by colors. It can be seen that most of the connector and also peripheral hubs share the same two or three largest modules in the network (Fig. 7A). In most cases of the kissing couples investigated in the study, the largest module represents the aforementioned theta-alpha subnetwork. This module also has the strongest connections to the other modules (Fig. 7B). However, a more thorough view on the modularity structure of the kissing couple presented in Figure 7 indicates that the modular organization of hyper-brain networks have a more complex structure (see Fig. 7C). During RK, five out of nine (in total) modules (marked in blue, red, green, yellow, and aquamarine) are relatively large and contain alpha-oscillation nodes together with other frequency nodes distributed across the two brains. The blue module shares theta- and alpha-frequency nodes in the two brains and represents the above-mentioned theta-alpha subnetwork. Furthermore, fronto-temporal alpha-frequency nodes in male brain share the beta-frequency nodes distributed across the female brain in the common module marked in red. The yellow module shares the frontal (and one occipital) alpha-frequency nodes in the male brain with 30-Hz-oscillation nodes distributed across the female brain. The green and aquamarine modules belong practically to the female brain and bind together alpha and gamma oscillations in the female brain. All this leads to a very intertwined hyper-brain structure during RK. During K-SA, there are two (marked in blue and red) out of seven (in total) largest modules, whereby all the nodes in the female brain belong to these two largest modules and share these modules with alpha-frequency nodes in the male brain. Overall, these two modules represent two very strong hyper-brain subnetworks: (i) alpha-gamma subnetwork (blue) and (ii) theta-alpha-beta subnetwork (red). During HK, there are two large modules (marked in blue and red) that share alpha-frequency nodes in the male brain with those of the female brain, whereby all the frequencies, with exception of 60-Hz oscillations in the female brain, join in these two modules; moreover, the nodes belonging to the first largest module (marked in blue) lie in the fronto-central regions in both the female and male brains, whereas the nodes from the second largest module (marked in red) are localized in the temporal and parieto-occipital regions, also in both brains. It thus appears that hyper-brain networks in kissing couples have a complex modular organization, in which alpha-frequency oscillations and their subnetworks, especially the theta-alpha subnetwork, play a crucial role. Figures 7D and 7E show the strongest connections within and between a couple’s brains, respectively. It should be noted here that intra-brain networks based on CFC have very strong large-scale connections binding distributed cell assemblies, especially between the frontal and parieto-occipital areas. These regions are also strongly interconnected or synchronized between the brains. Inter-brain coupling generally reach out from the frontal regions of one partner to the parieto-occipital or central regions of the other partner and vice versa, whereas frontal-to-frontal connections are mostly reduced or attenuated.

Bottom Line: Coordinated social interaction is associated with, and presumably dependent on, oscillatory couplings within and between brains, which, in turn, consist of an interplay across different frequencies.Network strengths were higher and characteristic path lengths shorter when individuals were kissing each other than when they were kissing their own hand.We conclude that hyper-brain networks based on CFC may capture neural mechanisms that support interpersonally coordinated voluntary action and bonding behavior.

View Article: PubMed Central - PubMed

Affiliation: Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.

ABSTRACT
Coordinated social interaction is associated with, and presumably dependent on, oscillatory couplings within and between brains, which, in turn, consist of an interplay across different frequencies. Here, we introduce a method of network construction based on the cross-frequency coupling (CFC) and examine whether coordinated social interaction is associated with CFC within and between brains. Specifically, we compare the electroencephalograms (EEG) of 15 heterosexual couples during romantic kissing to kissing one's own hand, and to kissing one another while performing silent arithmetic. Using graph-theory methods, we identify theta-alpha hyper-brain networks, with alpha serving a cleaving or pacemaker function. Network strengths were higher and characteristic path lengths shorter when individuals were kissing each other than when they were kissing their own hand. In both partner-oriented kissing conditions, greater strength and shorter path length for 5-Hz oscillation nodes correlated reliably with greater partner-oriented kissing satisfaction. This correlation was especially strong for inter-brain connections in both partner-oriented kissing conditions but not during kissing one's own hand. Kissing quality assessed after the kissing with silent arithmetic correlated reliably with intra-brain strength of 10-Hz oscillation nodes during both romantic kissing and kissing with silent arithmetic. We conclude that hyper-brain networks based on CFC may capture neural mechanisms that support interpersonally coordinated voluntary action and bonding behavior.

No MeSH data available.


Related in: MedlinePlus