Limits...
Neurophysiological evidence for whole form retrieval of complex derived words: a mismatch negativity study.

Hanna J, Pulvermüller F - Front Hum Neurosci (2014)

Bottom Line: We found that congruent derived words elicited a stronger MMN than incongruent derived words, beginning about 150 ms after perception of the critical morpheme.Using distributed source localization methods, the MMN enhancement for well-formed derivationally complex words appeared to be most prominent in the left inferior anterior-temporal, bilateral superior parietal and bilateral post-central, supra-marginal areas.In addition, neurophysiological results reflected the frequency of derived forms, thus providing further converging evidence for whole form storage and against a combinatorial mechanism.

View Article: PubMed Central - PubMed

Affiliation: Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin Berlin, Germany.

ABSTRACT
Complex words can be seen as combinations of elementary units, decomposable into stems and affixes according to morphological rules. Alternatively, complex forms may be stored as single lexical entries and accessed as whole forms. This study uses an event-related potential brain response capable of indexing both whole-form retrieval and combinatorial processing, the Mismatch Negativity (MMN), to investigate early brain activity elicited by morphologically complex derived words in German. We presented complex words consisting of stems "sicher" (secure), or "sauber" (clean) combined with abstract nominalizing derivational affixes -heit or -keit, to form either congruent derived words: "Sicherheit" (security) and "Sauberkeit" (cleanliness), or incongruent derived pseudowords: *"Sicherkeit", and *"Sauberheit". Using this orthogonal design, it was possible to record brain responses for -heit and -keit in both congruent and incongruent contexts, therefore balancing acoustic variance. Previous research has shown that incongruent combinations of symbols elicit a stronger MMN than congruent combinations, but that single words or constructions stored as whole forms elicit a stronger MMN than pseudowords or non-existent constructions. We found that congruent derived words elicited a stronger MMN than incongruent derived words, beginning about 150 ms after perception of the critical morpheme. This pattern of results is consistent with whole-form storage of morphologically complex derived words as lexical units, or mini-constructions. Using distributed source localization methods, the MMN enhancement for well-formed derivationally complex words appeared to be most prominent in the left inferior anterior-temporal, bilateral superior parietal and bilateral post-central, supra-marginal areas. In addition, neurophysiological results reflected the frequency of derived forms, thus providing further converging evidence for whole form storage and against a combinatorial mechanism.

No MeSH data available.


Acoustic spectrograms of all stimuli. For each experimental part, the standard stimulus (“sicher”, “sauber”) is shown together with the two deviant stimuli (“-heit”, “-keit”). Probability of occurrence in the experiment is indicated for each stimulus as probability “p”.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4222328&req=5

Figure 2: Acoustic spectrograms of all stimuli. For each experimental part, the standard stimulus (“sicher”, “sauber”) is shown together with the two deviant stimuli (“-heit”, “-keit”). Probability of occurrence in the experiment is indicated for each stimulus as probability “p”.

Mentions: This experiment elicited MMNs using the classic, oddball paradigm where deviants occur rarely in a stream of more frequent standard stimuli. In this case, 1260 standards (3/4 of total stimuli), and 420 deviants. The stem (“sicher” or “sauber”) served as the standard in a given block, and the corresponding deviants were the stem appended with “-heit” or “-keit” (see Materials). The result is four deviants: sicherheit, *sicherkeit, *sauberheit, and sauberkeit (see Figure 2).


Neurophysiological evidence for whole form retrieval of complex derived words: a mismatch negativity study.

Hanna J, Pulvermüller F - Front Hum Neurosci (2014)

Acoustic spectrograms of all stimuli. For each experimental part, the standard stimulus (“sicher”, “sauber”) is shown together with the two deviant stimuli (“-heit”, “-keit”). Probability of occurrence in the experiment is indicated for each stimulus as probability “p”.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4222328&req=5

Figure 2: Acoustic spectrograms of all stimuli. For each experimental part, the standard stimulus (“sicher”, “sauber”) is shown together with the two deviant stimuli (“-heit”, “-keit”). Probability of occurrence in the experiment is indicated for each stimulus as probability “p”.
Mentions: This experiment elicited MMNs using the classic, oddball paradigm where deviants occur rarely in a stream of more frequent standard stimuli. In this case, 1260 standards (3/4 of total stimuli), and 420 deviants. The stem (“sicher” or “sauber”) served as the standard in a given block, and the corresponding deviants were the stem appended with “-heit” or “-keit” (see Materials). The result is four deviants: sicherheit, *sicherkeit, *sauberheit, and sauberkeit (see Figure 2).

Bottom Line: We found that congruent derived words elicited a stronger MMN than incongruent derived words, beginning about 150 ms after perception of the critical morpheme.Using distributed source localization methods, the MMN enhancement for well-formed derivationally complex words appeared to be most prominent in the left inferior anterior-temporal, bilateral superior parietal and bilateral post-central, supra-marginal areas.In addition, neurophysiological results reflected the frequency of derived forms, thus providing further converging evidence for whole form storage and against a combinatorial mechanism.

View Article: PubMed Central - PubMed

Affiliation: Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin Berlin, Germany.

ABSTRACT
Complex words can be seen as combinations of elementary units, decomposable into stems and affixes according to morphological rules. Alternatively, complex forms may be stored as single lexical entries and accessed as whole forms. This study uses an event-related potential brain response capable of indexing both whole-form retrieval and combinatorial processing, the Mismatch Negativity (MMN), to investigate early brain activity elicited by morphologically complex derived words in German. We presented complex words consisting of stems "sicher" (secure), or "sauber" (clean) combined with abstract nominalizing derivational affixes -heit or -keit, to form either congruent derived words: "Sicherheit" (security) and "Sauberkeit" (cleanliness), or incongruent derived pseudowords: *"Sicherkeit", and *"Sauberheit". Using this orthogonal design, it was possible to record brain responses for -heit and -keit in both congruent and incongruent contexts, therefore balancing acoustic variance. Previous research has shown that incongruent combinations of symbols elicit a stronger MMN than congruent combinations, but that single words or constructions stored as whole forms elicit a stronger MMN than pseudowords or non-existent constructions. We found that congruent derived words elicited a stronger MMN than incongruent derived words, beginning about 150 ms after perception of the critical morpheme. This pattern of results is consistent with whole-form storage of morphologically complex derived words as lexical units, or mini-constructions. Using distributed source localization methods, the MMN enhancement for well-formed derivationally complex words appeared to be most prominent in the left inferior anterior-temporal, bilateral superior parietal and bilateral post-central, supra-marginal areas. In addition, neurophysiological results reflected the frequency of derived forms, thus providing further converging evidence for whole form storage and against a combinatorial mechanism.

No MeSH data available.