Limits...
Age- and glycemia-related miR-126-3p levels in plasma and endothelial cells.

Olivieri F, Bonafè M, Spazzafumo L, Gobbi M, Prattichizzo F, Recchioni R, Marcheselli F, La Sala L, Galeazzi R, Rippo MR, Fulgenzi G, Angelini S, Lazzarini R, Bonfigli AR, Brugè F, Tiano L, Genovese S, Ceriello A, Boemi M, Franceschi C, Procopio AD, Testa R - Aging (Albany NY) (2014)

Bottom Line: Plasma miR-126-3p was significantly higher in the oldest compared with the youngest CTRs ( <45 vs. >75 years; relative expression: 0.27±0.29 vs. 0.48±0.39, p=0.047).Notably, significant down- regulation of SPRED-1 protein, a validated miR-126-3p target, was found in senescent HUVECs.Aging/senescence-associated miR-126-3p up-regulation is likely a senescence-associated compensatory mechanism that is blunted when endothelial cells are exposed to high glucose levels, a phenomenon that probably occurs in vivo in T2DM patients.

View Article: PubMed Central - PubMed

Affiliation: Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy. Center of Clinical Pathology and Innovative Therapy, National Institute INRCA-IRCCS, Ancona, Italy.

ABSTRACT
Circulating miR-126-3p levels were determined in 136 healthy subjects (CTRs) aged 20-90 years and 193 patients with type-2 diabetes mellitus (T2DMs) aged 40-80 years, to explore the combined effect of age and glycemic state on miR-126-3p expression. Moreover, intra/extracellular miR-126-3p levels were measured in human endothelial cells (HUVECs) undergoing senescence under normo/hyper-glycemic conditions. Plasma miR-126-3p was significantly higher in the oldest compared with the youngest CTRs ( <45 vs. >75 years; relative expression: 0.27±0.29 vs. 0.48±0.39, p=0.047). Age-based comparison between CTRs and T2DM demonstrated significantly different miR-126-3p levels only in the oldest (0.48±0.39 vs. 0.22±0.23, p<0.005). After multiple adjustments, miR-126-3p levels were seen to be lower in patients with poor glycemic control, compared with age-matched CTRs. The age-related increase in plasma miR-126-3p found in CTRs was paralleled by a 5/6-fold increase in intra/extracellular miR-126-3p in in vitro-cultured HUVECs undergoing senescence. Notably, significant down- regulation of SPRED-1 protein, a validated miR-126-3p target, was found in senescent HUVECs. Moreover, miR-126-3p expression was down-regulated in intermediate-age HUVECs grown in high-glucose medium until senescence. Aging/senescence-associated miR-126-3p up-regulation is likely a senescence-associated compensatory mechanism that is blunted when endothelial cells are exposed to high glucose levels, a phenomenon that probably occurs in vivo in T2DM patients.

Show MeSH

Related in: MedlinePlus

Relative miR-126-3p expression and SPRED-1 protein levels in young, intermediate age and senescent HUVECsYoung, intermediate age and senescent HUVECs: intracellular miR-126-3p (a) and miR-126-3p recovered from conditioned medium (b). Data are expressed as 2−ΔCt normalized with RNU44, and reported as arbitrary units (a.u.). Western blot and densitometric analysis of SPRED-1 (c and d, respectively) were performed in the same samples. Data from three independent experiments are expressed as percentage of intensity in young cells. *GLM, p<0.05.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4221921&req=5

Figure 5: Relative miR-126-3p expression and SPRED-1 protein levels in young, intermediate age and senescent HUVECsYoung, intermediate age and senescent HUVECs: intracellular miR-126-3p (a) and miR-126-3p recovered from conditioned medium (b). Data are expressed as 2−ΔCt normalized with RNU44, and reported as arbitrary units (a.u.). Western blot and densitometric analysis of SPRED-1 (c and d, respectively) were performed in the same samples. Data from three independent experiments are expressed as percentage of intensity in young cells. *GLM, p<0.05.

Mentions: A significant miR-126-3p increase was found in senescent compared with intermediate age and young cells (intracellular miR-126-3p: senescent vs. intermediate age cells, 97.8 ± 15 vs. 15.6 ± 5, p<0.05; senescent vs. young cells, 97.8 ± 15 vs. 12.9 ± 4, p<0.05; extracellular miR-126-3p: senescent vs. intermediate age cells, 4.9 ± 1.1 vs. 1.6 ± 0.6, p<0.05; senescent vs. young cells, 4.9 ± 1.1 vs. 1.1 ± 0.5, p<0.05) (Fig. 5a and 5b), with an approximately 6-fold and 5-fold increase in intra- and extracellular levels, respectively. Accordingly SPRED-1 protein, a validated target of miR-126-3p in HUVECs [36], was significantly down-regulated in senescent compared with intermediate age and young cells (Fig. 5c).


Age- and glycemia-related miR-126-3p levels in plasma and endothelial cells.

Olivieri F, Bonafè M, Spazzafumo L, Gobbi M, Prattichizzo F, Recchioni R, Marcheselli F, La Sala L, Galeazzi R, Rippo MR, Fulgenzi G, Angelini S, Lazzarini R, Bonfigli AR, Brugè F, Tiano L, Genovese S, Ceriello A, Boemi M, Franceschi C, Procopio AD, Testa R - Aging (Albany NY) (2014)

Relative miR-126-3p expression and SPRED-1 protein levels in young, intermediate age and senescent HUVECsYoung, intermediate age and senescent HUVECs: intracellular miR-126-3p (a) and miR-126-3p recovered from conditioned medium (b). Data are expressed as 2−ΔCt normalized with RNU44, and reported as arbitrary units (a.u.). Western blot and densitometric analysis of SPRED-1 (c and d, respectively) were performed in the same samples. Data from three independent experiments are expressed as percentage of intensity in young cells. *GLM, p<0.05.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4221921&req=5

Figure 5: Relative miR-126-3p expression and SPRED-1 protein levels in young, intermediate age and senescent HUVECsYoung, intermediate age and senescent HUVECs: intracellular miR-126-3p (a) and miR-126-3p recovered from conditioned medium (b). Data are expressed as 2−ΔCt normalized with RNU44, and reported as arbitrary units (a.u.). Western blot and densitometric analysis of SPRED-1 (c and d, respectively) were performed in the same samples. Data from three independent experiments are expressed as percentage of intensity in young cells. *GLM, p<0.05.
Mentions: A significant miR-126-3p increase was found in senescent compared with intermediate age and young cells (intracellular miR-126-3p: senescent vs. intermediate age cells, 97.8 ± 15 vs. 15.6 ± 5, p<0.05; senescent vs. young cells, 97.8 ± 15 vs. 12.9 ± 4, p<0.05; extracellular miR-126-3p: senescent vs. intermediate age cells, 4.9 ± 1.1 vs. 1.6 ± 0.6, p<0.05; senescent vs. young cells, 4.9 ± 1.1 vs. 1.1 ± 0.5, p<0.05) (Fig. 5a and 5b), with an approximately 6-fold and 5-fold increase in intra- and extracellular levels, respectively. Accordingly SPRED-1 protein, a validated target of miR-126-3p in HUVECs [36], was significantly down-regulated in senescent compared with intermediate age and young cells (Fig. 5c).

Bottom Line: Plasma miR-126-3p was significantly higher in the oldest compared with the youngest CTRs ( <45 vs. >75 years; relative expression: 0.27±0.29 vs. 0.48±0.39, p=0.047).Notably, significant down- regulation of SPRED-1 protein, a validated miR-126-3p target, was found in senescent HUVECs.Aging/senescence-associated miR-126-3p up-regulation is likely a senescence-associated compensatory mechanism that is blunted when endothelial cells are exposed to high glucose levels, a phenomenon that probably occurs in vivo in T2DM patients.

View Article: PubMed Central - PubMed

Affiliation: Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy. Center of Clinical Pathology and Innovative Therapy, National Institute INRCA-IRCCS, Ancona, Italy.

ABSTRACT
Circulating miR-126-3p levels were determined in 136 healthy subjects (CTRs) aged 20-90 years and 193 patients with type-2 diabetes mellitus (T2DMs) aged 40-80 years, to explore the combined effect of age and glycemic state on miR-126-3p expression. Moreover, intra/extracellular miR-126-3p levels were measured in human endothelial cells (HUVECs) undergoing senescence under normo/hyper-glycemic conditions. Plasma miR-126-3p was significantly higher in the oldest compared with the youngest CTRs ( <45 vs. >75 years; relative expression: 0.27±0.29 vs. 0.48±0.39, p=0.047). Age-based comparison between CTRs and T2DM demonstrated significantly different miR-126-3p levels only in the oldest (0.48±0.39 vs. 0.22±0.23, p<0.005). After multiple adjustments, miR-126-3p levels were seen to be lower in patients with poor glycemic control, compared with age-matched CTRs. The age-related increase in plasma miR-126-3p found in CTRs was paralleled by a 5/6-fold increase in intra/extracellular miR-126-3p in in vitro-cultured HUVECs undergoing senescence. Notably, significant down- regulation of SPRED-1 protein, a validated miR-126-3p target, was found in senescent HUVECs. Moreover, miR-126-3p expression was down-regulated in intermediate-age HUVECs grown in high-glucose medium until senescence. Aging/senescence-associated miR-126-3p up-regulation is likely a senescence-associated compensatory mechanism that is blunted when endothelial cells are exposed to high glucose levels, a phenomenon that probably occurs in vivo in T2DM patients.

Show MeSH
Related in: MedlinePlus