Limits...
Zolpidem reduces hippocampal neuronal activity in freely behaving mice: a large scale calcium imaging study with miniaturized fluorescence microscope.

Berdyyeva T, Otte S, Aluisio L, Ziv Y, Burns LD, Dugovic C, Yun S, Ghosh KK, Schnitzer MJ, Lovenberg T, Bonaventure P - PLoS ONE (2014)

Bottom Line: The rate of calcium transients after Zolpidem administration was significantly lower compared to vehicle treatment.This analysis revealed significantly depressive effects of Zolpidem regardless of the animal's state.Individual hippocampal CA1 pyramidal cells differed in their responses to Zolpidem with the majority (∼ 65%) significantly decreasing the rate of calcium transients, and a small subset (3%) showing an unexpected and significant increase.

View Article: PubMed Central - PubMed

Affiliation: Janssen Research & Development, LLC, San Diego, California, United States of America.

ABSTRACT
Therapeutic drugs for cognitive and psychiatric disorders are often characterized by their molecular mechanism of action. Here we demonstrate a new approach to elucidate drug action on large-scale neuronal activity by tracking somatic calcium dynamics in hundreds of CA1 hippocampal neurons of pharmacologically manipulated behaving mice. We used an adeno-associated viral vector to express the calcium sensor GCaMP3 in CA1 pyramidal cells under control of the CaMKII promoter and a miniaturized microscope to observe cellular dynamics. We visualized these dynamics with and without a systemic administration of Zolpidem, a GABAA agonist that is the most commonly prescribed drug for the treatment of insomnia in the United States. Despite growing concerns about the potential adverse effects of Zolpidem on memory and cognition, it remained unclear whether Zolpidem alters neuronal activity in the hippocampus, a brain area critical for cognition and memory. Zolpidem, when delivered at a dose known to induce and prolong sleep, strongly suppressed CA1 calcium signaling. The rate of calcium transients after Zolpidem administration was significantly lower compared to vehicle treatment. To factor out the contribution of changes in locomotor or physiological conditions following Zolpidem treatment, we compared the cellular activity across comparable epochs matched by locomotor and physiological assessments. This analysis revealed significantly depressive effects of Zolpidem regardless of the animal's state. Individual hippocampal CA1 pyramidal cells differed in their responses to Zolpidem with the majority (∼ 65%) significantly decreasing the rate of calcium transients, and a small subset (3%) showing an unexpected and significant increase. By linking molecular mechanisms with the dynamics of neural circuitry and behavioral states, this approach has the potential to contribute substantially to the development of new therapeutics for the treatment of CNS disorders.

Show MeSH

Related in: MedlinePlus

Neuronal activity during Zolpidem-induced NREM sleep was lower than neuronal activity during physiological NREM.A: Raster plots of calcium transients in 478 individual cells (vertical axis) during pre-treatment active wake periods (“Baseline”) and post-treatment NREM periods (“NREM”) in two imaging sessions (“Vehicle” and “Zolpidem”). B: Average frequencies of calcium transients (“Event Rate”: number of events/minute/cell) during pre-treatment active wake (in both Vehicle and Zolpidem sessions, black bars), physiological NREM (“Vehicle”, grey bar) and Zolpidem-induced NREM (“Zolpidem”, grey bar). The error bars are the s.e.m. for each condition across all cells. Zolpidem NREM neuronal activity was significantly lower than vehicle NREM neuronal activity (0.09 and 0.15 events/minute/cell, respectively, 40% change, p<0.004, WSR test).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4221229&req=5

pone-0112068-g005: Neuronal activity during Zolpidem-induced NREM sleep was lower than neuronal activity during physiological NREM.A: Raster plots of calcium transients in 478 individual cells (vertical axis) during pre-treatment active wake periods (“Baseline”) and post-treatment NREM periods (“NREM”) in two imaging sessions (“Vehicle” and “Zolpidem”). B: Average frequencies of calcium transients (“Event Rate”: number of events/minute/cell) during pre-treatment active wake (in both Vehicle and Zolpidem sessions, black bars), physiological NREM (“Vehicle”, grey bar) and Zolpidem-induced NREM (“Zolpidem”, grey bar). The error bars are the s.e.m. for each condition across all cells. Zolpidem NREM neuronal activity was significantly lower than vehicle NREM neuronal activity (0.09 and 0.15 events/minute/cell, respectively, 40% change, p<0.004, WSR test).

Mentions: To factor out contribution of differing physiological states on the observed drug effects, we compared the frequency of calcium transients between vehicle and Zolpidem imaging periods in the epochs matched by an identified physiological state (NREM), the duration of which was specifically increased by Zolpidem (Table 1). Prior experiments indicated that 3 hour imaging session would be necessary for the appropriate statistical comparison of neuronal data during continuous unambiguous NREM between Zolpidem and vehicle condition (when animals spent less time in NREM). To minimize potential photobleaching, we conducted the experiment in 2 separate 3-hour long sessions (Methods, “Imaging with multimodal recordings”). We tracked activity of the same individual cells (n = 478) in both sessions: the vehicle session (Fig. 5A, “Vehicle”) and Zolpidem session (Fig. 5A, “Zolpidem”). To facilitate identification and alignment of individual cells across sessions, we collected 10 minutes of pre-treatment baseline data while animals were actively exploring a novel environment (Fig. 5A, “Baseline”). The frequency of calcium transients during baseline periods was significantly different across sessions (1.33 events/minute/cell in Zolpidem session vs 1.29 in vehicle session; WSR test, p<0.001), most likely due to the variations in the animal’s exploratory activity or other behavioral factors.


Zolpidem reduces hippocampal neuronal activity in freely behaving mice: a large scale calcium imaging study with miniaturized fluorescence microscope.

Berdyyeva T, Otte S, Aluisio L, Ziv Y, Burns LD, Dugovic C, Yun S, Ghosh KK, Schnitzer MJ, Lovenberg T, Bonaventure P - PLoS ONE (2014)

Neuronal activity during Zolpidem-induced NREM sleep was lower than neuronal activity during physiological NREM.A: Raster plots of calcium transients in 478 individual cells (vertical axis) during pre-treatment active wake periods (“Baseline”) and post-treatment NREM periods (“NREM”) in two imaging sessions (“Vehicle” and “Zolpidem”). B: Average frequencies of calcium transients (“Event Rate”: number of events/minute/cell) during pre-treatment active wake (in both Vehicle and Zolpidem sessions, black bars), physiological NREM (“Vehicle”, grey bar) and Zolpidem-induced NREM (“Zolpidem”, grey bar). The error bars are the s.e.m. for each condition across all cells. Zolpidem NREM neuronal activity was significantly lower than vehicle NREM neuronal activity (0.09 and 0.15 events/minute/cell, respectively, 40% change, p<0.004, WSR test).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4221229&req=5

pone-0112068-g005: Neuronal activity during Zolpidem-induced NREM sleep was lower than neuronal activity during physiological NREM.A: Raster plots of calcium transients in 478 individual cells (vertical axis) during pre-treatment active wake periods (“Baseline”) and post-treatment NREM periods (“NREM”) in two imaging sessions (“Vehicle” and “Zolpidem”). B: Average frequencies of calcium transients (“Event Rate”: number of events/minute/cell) during pre-treatment active wake (in both Vehicle and Zolpidem sessions, black bars), physiological NREM (“Vehicle”, grey bar) and Zolpidem-induced NREM (“Zolpidem”, grey bar). The error bars are the s.e.m. for each condition across all cells. Zolpidem NREM neuronal activity was significantly lower than vehicle NREM neuronal activity (0.09 and 0.15 events/minute/cell, respectively, 40% change, p<0.004, WSR test).
Mentions: To factor out contribution of differing physiological states on the observed drug effects, we compared the frequency of calcium transients between vehicle and Zolpidem imaging periods in the epochs matched by an identified physiological state (NREM), the duration of which was specifically increased by Zolpidem (Table 1). Prior experiments indicated that 3 hour imaging session would be necessary for the appropriate statistical comparison of neuronal data during continuous unambiguous NREM between Zolpidem and vehicle condition (when animals spent less time in NREM). To minimize potential photobleaching, we conducted the experiment in 2 separate 3-hour long sessions (Methods, “Imaging with multimodal recordings”). We tracked activity of the same individual cells (n = 478) in both sessions: the vehicle session (Fig. 5A, “Vehicle”) and Zolpidem session (Fig. 5A, “Zolpidem”). To facilitate identification and alignment of individual cells across sessions, we collected 10 minutes of pre-treatment baseline data while animals were actively exploring a novel environment (Fig. 5A, “Baseline”). The frequency of calcium transients during baseline periods was significantly different across sessions (1.33 events/minute/cell in Zolpidem session vs 1.29 in vehicle session; WSR test, p<0.001), most likely due to the variations in the animal’s exploratory activity or other behavioral factors.

Bottom Line: The rate of calcium transients after Zolpidem administration was significantly lower compared to vehicle treatment.This analysis revealed significantly depressive effects of Zolpidem regardless of the animal's state.Individual hippocampal CA1 pyramidal cells differed in their responses to Zolpidem with the majority (∼ 65%) significantly decreasing the rate of calcium transients, and a small subset (3%) showing an unexpected and significant increase.

View Article: PubMed Central - PubMed

Affiliation: Janssen Research & Development, LLC, San Diego, California, United States of America.

ABSTRACT
Therapeutic drugs for cognitive and psychiatric disorders are often characterized by their molecular mechanism of action. Here we demonstrate a new approach to elucidate drug action on large-scale neuronal activity by tracking somatic calcium dynamics in hundreds of CA1 hippocampal neurons of pharmacologically manipulated behaving mice. We used an adeno-associated viral vector to express the calcium sensor GCaMP3 in CA1 pyramidal cells under control of the CaMKII promoter and a miniaturized microscope to observe cellular dynamics. We visualized these dynamics with and without a systemic administration of Zolpidem, a GABAA agonist that is the most commonly prescribed drug for the treatment of insomnia in the United States. Despite growing concerns about the potential adverse effects of Zolpidem on memory and cognition, it remained unclear whether Zolpidem alters neuronal activity in the hippocampus, a brain area critical for cognition and memory. Zolpidem, when delivered at a dose known to induce and prolong sleep, strongly suppressed CA1 calcium signaling. The rate of calcium transients after Zolpidem administration was significantly lower compared to vehicle treatment. To factor out the contribution of changes in locomotor or physiological conditions following Zolpidem treatment, we compared the cellular activity across comparable epochs matched by locomotor and physiological assessments. This analysis revealed significantly depressive effects of Zolpidem regardless of the animal's state. Individual hippocampal CA1 pyramidal cells differed in their responses to Zolpidem with the majority (∼ 65%) significantly decreasing the rate of calcium transients, and a small subset (3%) showing an unexpected and significant increase. By linking molecular mechanisms with the dynamics of neural circuitry and behavioral states, this approach has the potential to contribute substantially to the development of new therapeutics for the treatment of CNS disorders.

Show MeSH
Related in: MedlinePlus