Limits...
Assessing impacts of unconventional natural gas extraction on microbial communities in headwater stream ecosystems in Northwestern Pennsylvania.

Trexler R, Solomon C, Brislawn CJ, Wright JR, Rosenberger A, McClure EE, Grube AM, Peterson MP, Keddache M, Mason OU, Hazen TC, Grant CJ, Lamendella R - Front Microbiol (2014)

Bottom Line: Microbial community analyses showed significant reductions in species richness as well as evenness in sites with Marcellus shale activity.For example, operational taxonomic units (OTUs) within the Acetobacteracea, Methylocystaceae, Acidobacteriaceae, and Phenylobacterium were greater than three log-fold more abundant in MSA+ sites as compared to MSA- sites.It should be noted that many of the OTUs enriched in MSA+ sites are putative acidophilic and/or methanotrophic populations.

View Article: PubMed Central - PubMed

Affiliation: Juniata College, Department of Biology Huntingdon, PA, USA.

ABSTRACT
Hydraulic fracturing and horizontal drilling have increased dramatically in Pennsylvania Marcellus shale formations, however the potential for major environmental impacts are still incompletely understood. High-throughput sequencing of the 16S rRNA gene was performed to characterize the microbial community structure of water, sediment, bryophyte, and biofilm samples from 26 headwater stream sites in northwestern Pennsylvania with different histories of fracking activity within Marcellus shale formations. Further, we describe the relationship between microbial community structure and environmental parameters measured. Approximately 3.2 million 16S rRNA gene sequences were retrieved from a total of 58 samples. Microbial community analyses showed significant reductions in species richness as well as evenness in sites with Marcellus shale activity. Beta diversity analyses revealed distinct microbial community structure between sites with and without Marcellus shale activity. For example, operational taxonomic units (OTUs) within the Acetobacteracea, Methylocystaceae, Acidobacteriaceae, and Phenylobacterium were greater than three log-fold more abundant in MSA+ sites as compared to MSA- sites. Further, several of these OTUs were strongly negatively correlated with pH and positively correlated with the number of wellpads in a watershed. It should be noted that many of the OTUs enriched in MSA+ sites are putative acidophilic and/or methanotrophic populations. This study revealed apparent shifts in the autochthonous microbial communities and highlighted potential members that could be responding to changing stream conditions as a result of nascent industrial activity in these aquatic ecosystems.

No MeSH data available.


Related in: MedlinePlus

Abundance of bacterial phyla in (A) biofilm (n = 2) and water (n = 8) samples, (B) bryophyte (n = 24), and sediment (n = 24) samples. Samples were grouped by Marcellus shale activity status and by sample matrix. OTUs with more than 20 sequences in at least one sample are shown. Plots were created in phyloseq (McMurdie and Holmes, 2013) using the functions tax_glom and tip_glom (height = 0.9) to consolidate the taxa. Unknown phyla are shown in white. All biofilm samples were collected from MSA+ sites. Note that the difference in sequence abundance is attributed to number of samples and sequencing depth.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4219493&req=5

Figure 1: Abundance of bacterial phyla in (A) biofilm (n = 2) and water (n = 8) samples, (B) bryophyte (n = 24), and sediment (n = 24) samples. Samples were grouped by Marcellus shale activity status and by sample matrix. OTUs with more than 20 sequences in at least one sample are shown. Plots were created in phyloseq (McMurdie and Holmes, 2013) using the functions tax_glom and tip_glom (height = 0.9) to consolidate the taxa. Unknown phyla are shown in white. All biofilm samples were collected from MSA+ sites. Note that the difference in sequence abundance is attributed to number of samples and sequencing depth.

Mentions: Phylum-level community structure for MSA+ and MSA− samples within each sample matrix showed that Proteobacteria was the dominant phylum across all samples (Figure 1). No major shifts in phyla abundance were noted between MSA+ and MSA− sites for sediment, water, and bryophyte samples (Figures S2A–S2C). However, major changes in community structure at the phylum rank were observed in the two biofilm samples from Little Laurel Run (n = 13 wellpads) and South Branch North Fork Redbank Creek (n = 1 wellpad). The biofilm sample from Little Laurel Run, a spill site, was dominated by multiple phyla, including Proteobacteria, Cyanobacteria, Verrucomicrobia, Acidobacteria, and Bacteroidetes, while the biofilm sample from South Branch North Fork Redbank Creek was exclusively dominated by Proteobacteria (Figure S2D).


Assessing impacts of unconventional natural gas extraction on microbial communities in headwater stream ecosystems in Northwestern Pennsylvania.

Trexler R, Solomon C, Brislawn CJ, Wright JR, Rosenberger A, McClure EE, Grube AM, Peterson MP, Keddache M, Mason OU, Hazen TC, Grant CJ, Lamendella R - Front Microbiol (2014)

Abundance of bacterial phyla in (A) biofilm (n = 2) and water (n = 8) samples, (B) bryophyte (n = 24), and sediment (n = 24) samples. Samples were grouped by Marcellus shale activity status and by sample matrix. OTUs with more than 20 sequences in at least one sample are shown. Plots were created in phyloseq (McMurdie and Holmes, 2013) using the functions tax_glom and tip_glom (height = 0.9) to consolidate the taxa. Unknown phyla are shown in white. All biofilm samples were collected from MSA+ sites. Note that the difference in sequence abundance is attributed to number of samples and sequencing depth.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4219493&req=5

Figure 1: Abundance of bacterial phyla in (A) biofilm (n = 2) and water (n = 8) samples, (B) bryophyte (n = 24), and sediment (n = 24) samples. Samples were grouped by Marcellus shale activity status and by sample matrix. OTUs with more than 20 sequences in at least one sample are shown. Plots were created in phyloseq (McMurdie and Holmes, 2013) using the functions tax_glom and tip_glom (height = 0.9) to consolidate the taxa. Unknown phyla are shown in white. All biofilm samples were collected from MSA+ sites. Note that the difference in sequence abundance is attributed to number of samples and sequencing depth.
Mentions: Phylum-level community structure for MSA+ and MSA− samples within each sample matrix showed that Proteobacteria was the dominant phylum across all samples (Figure 1). No major shifts in phyla abundance were noted between MSA+ and MSA− sites for sediment, water, and bryophyte samples (Figures S2A–S2C). However, major changes in community structure at the phylum rank were observed in the two biofilm samples from Little Laurel Run (n = 13 wellpads) and South Branch North Fork Redbank Creek (n = 1 wellpad). The biofilm sample from Little Laurel Run, a spill site, was dominated by multiple phyla, including Proteobacteria, Cyanobacteria, Verrucomicrobia, Acidobacteria, and Bacteroidetes, while the biofilm sample from South Branch North Fork Redbank Creek was exclusively dominated by Proteobacteria (Figure S2D).

Bottom Line: Microbial community analyses showed significant reductions in species richness as well as evenness in sites with Marcellus shale activity.For example, operational taxonomic units (OTUs) within the Acetobacteracea, Methylocystaceae, Acidobacteriaceae, and Phenylobacterium were greater than three log-fold more abundant in MSA+ sites as compared to MSA- sites.It should be noted that many of the OTUs enriched in MSA+ sites are putative acidophilic and/or methanotrophic populations.

View Article: PubMed Central - PubMed

Affiliation: Juniata College, Department of Biology Huntingdon, PA, USA.

ABSTRACT
Hydraulic fracturing and horizontal drilling have increased dramatically in Pennsylvania Marcellus shale formations, however the potential for major environmental impacts are still incompletely understood. High-throughput sequencing of the 16S rRNA gene was performed to characterize the microbial community structure of water, sediment, bryophyte, and biofilm samples from 26 headwater stream sites in northwestern Pennsylvania with different histories of fracking activity within Marcellus shale formations. Further, we describe the relationship between microbial community structure and environmental parameters measured. Approximately 3.2 million 16S rRNA gene sequences were retrieved from a total of 58 samples. Microbial community analyses showed significant reductions in species richness as well as evenness in sites with Marcellus shale activity. Beta diversity analyses revealed distinct microbial community structure between sites with and without Marcellus shale activity. For example, operational taxonomic units (OTUs) within the Acetobacteracea, Methylocystaceae, Acidobacteriaceae, and Phenylobacterium were greater than three log-fold more abundant in MSA+ sites as compared to MSA- sites. Further, several of these OTUs were strongly negatively correlated with pH and positively correlated with the number of wellpads in a watershed. It should be noted that many of the OTUs enriched in MSA+ sites are putative acidophilic and/or methanotrophic populations. This study revealed apparent shifts in the autochthonous microbial communities and highlighted potential members that could be responding to changing stream conditions as a result of nascent industrial activity in these aquatic ecosystems.

No MeSH data available.


Related in: MedlinePlus