Limits...
Two distinct microbial communities revealed in the sponge Cinachyrella.

Cuvelier ML, Blake E, Mulheron R, McCarthy PJ, Blackwelder P, Thurber RL, Lopez JV - Front Microbiol (2014)

Bottom Line: Both sponge groups were dominated by Proteobacteria, but Alphaproteobacteria were significantly more abundant in SG1.Furthermore, SG1 and SG2 only had 95 OTUs in common, representing 30.5 and 22.4% of SG1 and SG2's total OTUs, respectively.These results suggest that the sponge host may exert a pivotal influence on the nature and structure of the microbial community and may only be marginally affected by external environment parameters.

View Article: PubMed Central - PubMed

Affiliation: Biological Sciences Department, Florida International University Miami, FL, USA.

ABSTRACT
Marine sponges are vital components of benthic and coral reef ecosystems, providing shelter and nutrition for many organisms. In addition, sponges act as an essential carbon and nutrient link between the pelagic and benthic environment by filtering large quantities of seawater. Many sponge species harbor a diverse microbial community (including Archaea, Bacteria and Eukaryotes), which can constitute up to 50% of the sponge biomass. Sponges of the genus Cinachyrella are common in Caribbean and Floridian reefs and their archaeal and bacterial microbiomes were explored here using 16S rRNA gene tag pyrosequencing. Cinachyrella specimens and seawater samples were collected from the same South Florida reef at two different times of year. In total, 639 OTUs (12 archaeal and 627 bacterial) belonging to 2 archaeal and 21 bacterial phyla were detected in the sponges. Based on their microbiomes, the six sponge samples formed two distinct groups, namely sponge group 1 (SG1) with lower diversity (Shannon-Weiner index: 3.73 ± 0.22) and SG2 with higher diversity (Shannon-Weiner index: 5.95 ± 0.25). Hosts' 28S rRNA gene sequences further confirmed that the sponge specimens were composed of two taxa closely related to Cinachyrella kuekenthalli. Both sponge groups were dominated by Proteobacteria, but Alphaproteobacteria were significantly more abundant in SG1. SG2 harbored many bacterial phyla (>1% of sequences) present in low abundance or below detection limits (<0.07%) in SG1 including: Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospirae, PAUC34f, Poribacteria, and Verrucomicrobia. Furthermore, SG1 and SG2 only had 95 OTUs in common, representing 30.5 and 22.4% of SG1 and SG2's total OTUs, respectively. These results suggest that the sponge host may exert a pivotal influence on the nature and structure of the microbial community and may only be marginally affected by external environment parameters.

No MeSH data available.


Relative abundance of pyrosequencing reads at the phylum (or classes in the case of Proteobacteria) level present in six sponges (Sp1- 6: sponge 1- 6) and seawater (SW) samples collected in October 2011 (Oct) and February 2012 (Feb). Phyla comprised of <0.1% of sequences per sample are not shown. Based on the microbial community structure, samples were placed into two groups: sponge group 1 (SG1: Sp1 Oct, Sp4 Feb, Sp5 Feb and Sp6 Feb) and sponge group 2 (SG2: Sp2 Oct and Sp3 Oct).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4219487&req=5

Figure 2: Relative abundance of pyrosequencing reads at the phylum (or classes in the case of Proteobacteria) level present in six sponges (Sp1- 6: sponge 1- 6) and seawater (SW) samples collected in October 2011 (Oct) and February 2012 (Feb). Phyla comprised of <0.1% of sequences per sample are not shown. Based on the microbial community structure, samples were placed into two groups: sponge group 1 (SG1: Sp1 Oct, Sp4 Feb, Sp5 Feb and Sp6 Feb) and sponge group 2 (SG2: Sp2 Oct and Sp3 Oct).

Mentions: Overall, both sponge groups were dominated by Proteobacteria (SG1: 63.5 ± 2.9%; SG2: 38.9 ± 1.0%), but Alphaproteobacteria were more abundant (t = 5.23, P < 0.01) in SG1 (38.3 ± 3.8%) than in SG2 (7.9 ± 0.2%). Proteobacteria in SG2 were dominated by the Gammaproteobacteria (22.1 ± 1.1%, Figure 2). Actinobacteria were also present in both sponge groups, but were in significantly greater numbers (t = 3.23, P < 0.05) in SG1 (12.2 ± 2.0%, Figure 2) than SG2 (2.6 ± 0.6%, Figure 2). SG2 harbored the candidate phylum Poribacteria (6.4 ± 2.9%) that was first discovered from sponge tissues and can be widespread in these invertebrates (Fieseler et al., 2004; Lafi et al., 2009). In contrast Poribacteria was below the detection limit in SG1 (t = −3.67, P < 0.05; Figure 2).


Two distinct microbial communities revealed in the sponge Cinachyrella.

Cuvelier ML, Blake E, Mulheron R, McCarthy PJ, Blackwelder P, Thurber RL, Lopez JV - Front Microbiol (2014)

Relative abundance of pyrosequencing reads at the phylum (or classes in the case of Proteobacteria) level present in six sponges (Sp1- 6: sponge 1- 6) and seawater (SW) samples collected in October 2011 (Oct) and February 2012 (Feb). Phyla comprised of <0.1% of sequences per sample are not shown. Based on the microbial community structure, samples were placed into two groups: sponge group 1 (SG1: Sp1 Oct, Sp4 Feb, Sp5 Feb and Sp6 Feb) and sponge group 2 (SG2: Sp2 Oct and Sp3 Oct).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4219487&req=5

Figure 2: Relative abundance of pyrosequencing reads at the phylum (or classes in the case of Proteobacteria) level present in six sponges (Sp1- 6: sponge 1- 6) and seawater (SW) samples collected in October 2011 (Oct) and February 2012 (Feb). Phyla comprised of <0.1% of sequences per sample are not shown. Based on the microbial community structure, samples were placed into two groups: sponge group 1 (SG1: Sp1 Oct, Sp4 Feb, Sp5 Feb and Sp6 Feb) and sponge group 2 (SG2: Sp2 Oct and Sp3 Oct).
Mentions: Overall, both sponge groups were dominated by Proteobacteria (SG1: 63.5 ± 2.9%; SG2: 38.9 ± 1.0%), but Alphaproteobacteria were more abundant (t = 5.23, P < 0.01) in SG1 (38.3 ± 3.8%) than in SG2 (7.9 ± 0.2%). Proteobacteria in SG2 were dominated by the Gammaproteobacteria (22.1 ± 1.1%, Figure 2). Actinobacteria were also present in both sponge groups, but were in significantly greater numbers (t = 3.23, P < 0.05) in SG1 (12.2 ± 2.0%, Figure 2) than SG2 (2.6 ± 0.6%, Figure 2). SG2 harbored the candidate phylum Poribacteria (6.4 ± 2.9%) that was first discovered from sponge tissues and can be widespread in these invertebrates (Fieseler et al., 2004; Lafi et al., 2009). In contrast Poribacteria was below the detection limit in SG1 (t = −3.67, P < 0.05; Figure 2).

Bottom Line: Both sponge groups were dominated by Proteobacteria, but Alphaproteobacteria were significantly more abundant in SG1.Furthermore, SG1 and SG2 only had 95 OTUs in common, representing 30.5 and 22.4% of SG1 and SG2's total OTUs, respectively.These results suggest that the sponge host may exert a pivotal influence on the nature and structure of the microbial community and may only be marginally affected by external environment parameters.

View Article: PubMed Central - PubMed

Affiliation: Biological Sciences Department, Florida International University Miami, FL, USA.

ABSTRACT
Marine sponges are vital components of benthic and coral reef ecosystems, providing shelter and nutrition for many organisms. In addition, sponges act as an essential carbon and nutrient link between the pelagic and benthic environment by filtering large quantities of seawater. Many sponge species harbor a diverse microbial community (including Archaea, Bacteria and Eukaryotes), which can constitute up to 50% of the sponge biomass. Sponges of the genus Cinachyrella are common in Caribbean and Floridian reefs and their archaeal and bacterial microbiomes were explored here using 16S rRNA gene tag pyrosequencing. Cinachyrella specimens and seawater samples were collected from the same South Florida reef at two different times of year. In total, 639 OTUs (12 archaeal and 627 bacterial) belonging to 2 archaeal and 21 bacterial phyla were detected in the sponges. Based on their microbiomes, the six sponge samples formed two distinct groups, namely sponge group 1 (SG1) with lower diversity (Shannon-Weiner index: 3.73 ± 0.22) and SG2 with higher diversity (Shannon-Weiner index: 5.95 ± 0.25). Hosts' 28S rRNA gene sequences further confirmed that the sponge specimens were composed of two taxa closely related to Cinachyrella kuekenthalli. Both sponge groups were dominated by Proteobacteria, but Alphaproteobacteria were significantly more abundant in SG1. SG2 harbored many bacterial phyla (>1% of sequences) present in low abundance or below detection limits (<0.07%) in SG1 including: Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospirae, PAUC34f, Poribacteria, and Verrucomicrobia. Furthermore, SG1 and SG2 only had 95 OTUs in common, representing 30.5 and 22.4% of SG1 and SG2's total OTUs, respectively. These results suggest that the sponge host may exert a pivotal influence on the nature and structure of the microbial community and may only be marginally affected by external environment parameters.

No MeSH data available.