Limits...
Development of aminoglycoside and β-lactamase resistance among intestinal microbiota of swine treated with lincomycin, chlortetracycline, and amoxicillin.

Sun J, Li L, Liu B, Xia J, Liao X, Liu Y - Front Microbiol (2014)

Bottom Line: After the antimicrobial treatment, shifts in microbial community, an increased proportion of resistant bacteria, and genes related to antimicrobial resistance as compared to the day before antimicrobial administration (day 0) were observed.Importantly, a positive correlation between antimicrobial resistance gene expression in different categories, especially those encoding aminoglycoside and β-lactamase and antimicrobial resistance, was observed.These findings demonstrate an important role of antimicrobial usage in animals in the development of antimicrobial resistance, and support the notion that prudent use of antimicrobials in swine is needed to reduce the risk of the emergence of multi-drug resistant zoonotic pathogens.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University Guangzhou, China.

ABSTRACT
Lincomycin, chlortetracycline, and amoxicillin are commonly used antimicrobials for growth promotion and infectious disease prophylaxis in swine production. In this study, we investigated the shifts and resistance development among intestinal microbiota in pregnant sows before and after lincomycin, chlortetracycline, and amoxicillin treatment by using phylogenetic analysis, bacterial enumeration, and PCR. After the antimicrobial treatment, shifts in microbial community, an increased proportion of resistant bacteria, and genes related to antimicrobial resistance as compared to the day before antimicrobial administration (day 0) were observed. Importantly, a positive correlation between antimicrobial resistance gene expression in different categories, especially those encoding aminoglycoside and β-lactamase and antimicrobial resistance, was observed. These findings demonstrate an important role of antimicrobial usage in animals in the development of antimicrobial resistance, and support the notion that prudent use of antimicrobials in swine is needed to reduce the risk of the emergence of multi-drug resistant zoonotic pathogens.

No MeSH data available.


Related in: MedlinePlus

Relative abundances of aminoglycoside ARGs (A), β-lactam ARGs (B), lincomycin ARGs, (C) and tetracycline ARGs (D) in fecal samples isolated before and after treatment, normalized to ambient 16S rRNA gene copies.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4219486&req=5

Figure 3: Relative abundances of aminoglycoside ARGs (A), β-lactam ARGs (B), lincomycin ARGs, (C) and tetracycline ARGs (D) in fecal samples isolated before and after treatment, normalized to ambient 16S rRNA gene copies.

Mentions: Among the 53 ARGs investigated, PMQR ARGs: aac(6′)-Ib-cr and qepA, tetracycline ARGs: tet(L), tet(Q) ,and tet(W), macrolide ARGs: ermA, ermB, mefA, and ereA, lincomycin ARGs: ermA, ermB, lnuA, and lnuF, aminoglycoside inactivating enzyme encoding ARGs: aac(3′)-IIc, aadA1, aadB, aph(3′)-II, aph(3′)-IV, aph(4′)-Ia, and armA, and β-lactamase-encoding ARGs: blaTEM, blaCTX-M-9G and blaOXA were detected in all samples before and after treatment. In general, the qPCR results revealed 4 ARG types with significantly greater abundance (by 10-, 50-, 1000-, and 40-fold, respectively, p < 0.01) in samples collected after treatment than before treatment: aminoglycoside ARGs, lincomycin ARGs, macrolide ARGs, and tetracycline ARGs (Figure 3; Table S2). The relative abundance of β-lactam ARGs increased at first, but then decreased after treatment.


Development of aminoglycoside and β-lactamase resistance among intestinal microbiota of swine treated with lincomycin, chlortetracycline, and amoxicillin.

Sun J, Li L, Liu B, Xia J, Liao X, Liu Y - Front Microbiol (2014)

Relative abundances of aminoglycoside ARGs (A), β-lactam ARGs (B), lincomycin ARGs, (C) and tetracycline ARGs (D) in fecal samples isolated before and after treatment, normalized to ambient 16S rRNA gene copies.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4219486&req=5

Figure 3: Relative abundances of aminoglycoside ARGs (A), β-lactam ARGs (B), lincomycin ARGs, (C) and tetracycline ARGs (D) in fecal samples isolated before and after treatment, normalized to ambient 16S rRNA gene copies.
Mentions: Among the 53 ARGs investigated, PMQR ARGs: aac(6′)-Ib-cr and qepA, tetracycline ARGs: tet(L), tet(Q) ,and tet(W), macrolide ARGs: ermA, ermB, mefA, and ereA, lincomycin ARGs: ermA, ermB, lnuA, and lnuF, aminoglycoside inactivating enzyme encoding ARGs: aac(3′)-IIc, aadA1, aadB, aph(3′)-II, aph(3′)-IV, aph(4′)-Ia, and armA, and β-lactamase-encoding ARGs: blaTEM, blaCTX-M-9G and blaOXA were detected in all samples before and after treatment. In general, the qPCR results revealed 4 ARG types with significantly greater abundance (by 10-, 50-, 1000-, and 40-fold, respectively, p < 0.01) in samples collected after treatment than before treatment: aminoglycoside ARGs, lincomycin ARGs, macrolide ARGs, and tetracycline ARGs (Figure 3; Table S2). The relative abundance of β-lactam ARGs increased at first, but then decreased after treatment.

Bottom Line: After the antimicrobial treatment, shifts in microbial community, an increased proportion of resistant bacteria, and genes related to antimicrobial resistance as compared to the day before antimicrobial administration (day 0) were observed.Importantly, a positive correlation between antimicrobial resistance gene expression in different categories, especially those encoding aminoglycoside and β-lactamase and antimicrobial resistance, was observed.These findings demonstrate an important role of antimicrobial usage in animals in the development of antimicrobial resistance, and support the notion that prudent use of antimicrobials in swine is needed to reduce the risk of the emergence of multi-drug resistant zoonotic pathogens.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University Guangzhou, China.

ABSTRACT
Lincomycin, chlortetracycline, and amoxicillin are commonly used antimicrobials for growth promotion and infectious disease prophylaxis in swine production. In this study, we investigated the shifts and resistance development among intestinal microbiota in pregnant sows before and after lincomycin, chlortetracycline, and amoxicillin treatment by using phylogenetic analysis, bacterial enumeration, and PCR. After the antimicrobial treatment, shifts in microbial community, an increased proportion of resistant bacteria, and genes related to antimicrobial resistance as compared to the day before antimicrobial administration (day 0) were observed. Importantly, a positive correlation between antimicrobial resistance gene expression in different categories, especially those encoding aminoglycoside and β-lactamase and antimicrobial resistance, was observed. These findings demonstrate an important role of antimicrobial usage in animals in the development of antimicrobial resistance, and support the notion that prudent use of antimicrobials in swine is needed to reduce the risk of the emergence of multi-drug resistant zoonotic pathogens.

No MeSH data available.


Related in: MedlinePlus