Limits...
Development of aminoglycoside and β-lactamase resistance among intestinal microbiota of swine treated with lincomycin, chlortetracycline, and amoxicillin.

Sun J, Li L, Liu B, Xia J, Liao X, Liu Y - Front Microbiol (2014)

Bottom Line: After the antimicrobial treatment, shifts in microbial community, an increased proportion of resistant bacteria, and genes related to antimicrobial resistance as compared to the day before antimicrobial administration (day 0) were observed.Importantly, a positive correlation between antimicrobial resistance gene expression in different categories, especially those encoding aminoglycoside and β-lactamase and antimicrobial resistance, was observed.These findings demonstrate an important role of antimicrobial usage in animals in the development of antimicrobial resistance, and support the notion that prudent use of antimicrobials in swine is needed to reduce the risk of the emergence of multi-drug resistant zoonotic pathogens.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University Guangzhou, China.

ABSTRACT
Lincomycin, chlortetracycline, and amoxicillin are commonly used antimicrobials for growth promotion and infectious disease prophylaxis in swine production. In this study, we investigated the shifts and resistance development among intestinal microbiota in pregnant sows before and after lincomycin, chlortetracycline, and amoxicillin treatment by using phylogenetic analysis, bacterial enumeration, and PCR. After the antimicrobial treatment, shifts in microbial community, an increased proportion of resistant bacteria, and genes related to antimicrobial resistance as compared to the day before antimicrobial administration (day 0) were observed. Importantly, a positive correlation between antimicrobial resistance gene expression in different categories, especially those encoding aminoglycoside and β-lactamase and antimicrobial resistance, was observed. These findings demonstrate an important role of antimicrobial usage in animals in the development of antimicrobial resistance, and support the notion that prudent use of antimicrobials in swine is needed to reduce the risk of the emergence of multi-drug resistant zoonotic pathogens.

No MeSH data available.


Related in: MedlinePlus

Shifts in fecal bacterial community memberships with antibiotic treatment. (A) Phylum-level composition of fecal microbial communities. Data were pooled for fecal samples isolated from the day 0 before treatment (A) and the day 3, 6, 12 after treatment (B–D) and are shown as percentage of abundance. (B) Genus-level composition of common pathogens and opportunistic pathogens, shown as the total number of sequences (normalized to 50000 total reads).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4219486&req=5

Figure 1: Shifts in fecal bacterial community memberships with antibiotic treatment. (A) Phylum-level composition of fecal microbial communities. Data were pooled for fecal samples isolated from the day 0 before treatment (A) and the day 3, 6, 12 after treatment (B–D) and are shown as percentage of abundance. (B) Genus-level composition of common pathogens and opportunistic pathogens, shown as the total number of sequences (normalized to 50000 total reads).

Mentions: We collected 79194 sequences of the V3–V5 regions of bacterial 16S rRNA genes from a total of five fecal samples. The majority of classifiable sequences (95.6 to 98.6%) belonged to the Firmicutes, Proteobacteria, and Bacteroidetes phyla. Specific changes in the microbial community associated with antimicrobial treatment included a decrease from 54.6 to 16.8% (p < 0.005) in the abundance of Proteobacteria phyla. In addition, the increase in Firmicutes abundance with antimicrobial treatment was particularly striking, with 42.1% of the population in sample A to 79% of the population in sample D (p < 0.05; Figure 1A). Members of the Bacteroidetes, Spirochaetes, Euryarchaeota, and Actinobacteria phyla increased by 2.5-, 5-, 1.1-, and 2-fold, respectively, (p < 0.05) at the third or sixth day after antimicrobial treatment (Sample B or C), and then returned to normal levels 12 days after treatment. Genus-level composition of common pathogens and opportunistic pathogens indicated that after antimicrobial treatment Escherichia/Shigella decreased by 40% (p < 0.05). Interestingly, Streptococcus populations were the major difference before and after treatment: 11–110-fold less abundance in samples B, C, and D than sample A (p < 0.05; Figure 1B). Treponema, Enterococcus, and Staphylococcus populations were increased by 6-, 14-, 2-fold, respectively, (p < 0.05) within a week but returned to baseline 6 days later.


Development of aminoglycoside and β-lactamase resistance among intestinal microbiota of swine treated with lincomycin, chlortetracycline, and amoxicillin.

Sun J, Li L, Liu B, Xia J, Liao X, Liu Y - Front Microbiol (2014)

Shifts in fecal bacterial community memberships with antibiotic treatment. (A) Phylum-level composition of fecal microbial communities. Data were pooled for fecal samples isolated from the day 0 before treatment (A) and the day 3, 6, 12 after treatment (B–D) and are shown as percentage of abundance. (B) Genus-level composition of common pathogens and opportunistic pathogens, shown as the total number of sequences (normalized to 50000 total reads).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4219486&req=5

Figure 1: Shifts in fecal bacterial community memberships with antibiotic treatment. (A) Phylum-level composition of fecal microbial communities. Data were pooled for fecal samples isolated from the day 0 before treatment (A) and the day 3, 6, 12 after treatment (B–D) and are shown as percentage of abundance. (B) Genus-level composition of common pathogens and opportunistic pathogens, shown as the total number of sequences (normalized to 50000 total reads).
Mentions: We collected 79194 sequences of the V3–V5 regions of bacterial 16S rRNA genes from a total of five fecal samples. The majority of classifiable sequences (95.6 to 98.6%) belonged to the Firmicutes, Proteobacteria, and Bacteroidetes phyla. Specific changes in the microbial community associated with antimicrobial treatment included a decrease from 54.6 to 16.8% (p < 0.005) in the abundance of Proteobacteria phyla. In addition, the increase in Firmicutes abundance with antimicrobial treatment was particularly striking, with 42.1% of the population in sample A to 79% of the population in sample D (p < 0.05; Figure 1A). Members of the Bacteroidetes, Spirochaetes, Euryarchaeota, and Actinobacteria phyla increased by 2.5-, 5-, 1.1-, and 2-fold, respectively, (p < 0.05) at the third or sixth day after antimicrobial treatment (Sample B or C), and then returned to normal levels 12 days after treatment. Genus-level composition of common pathogens and opportunistic pathogens indicated that after antimicrobial treatment Escherichia/Shigella decreased by 40% (p < 0.05). Interestingly, Streptococcus populations were the major difference before and after treatment: 11–110-fold less abundance in samples B, C, and D than sample A (p < 0.05; Figure 1B). Treponema, Enterococcus, and Staphylococcus populations were increased by 6-, 14-, 2-fold, respectively, (p < 0.05) within a week but returned to baseline 6 days later.

Bottom Line: After the antimicrobial treatment, shifts in microbial community, an increased proportion of resistant bacteria, and genes related to antimicrobial resistance as compared to the day before antimicrobial administration (day 0) were observed.Importantly, a positive correlation between antimicrobial resistance gene expression in different categories, especially those encoding aminoglycoside and β-lactamase and antimicrobial resistance, was observed.These findings demonstrate an important role of antimicrobial usage in animals in the development of antimicrobial resistance, and support the notion that prudent use of antimicrobials in swine is needed to reduce the risk of the emergence of multi-drug resistant zoonotic pathogens.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University Guangzhou, China.

ABSTRACT
Lincomycin, chlortetracycline, and amoxicillin are commonly used antimicrobials for growth promotion and infectious disease prophylaxis in swine production. In this study, we investigated the shifts and resistance development among intestinal microbiota in pregnant sows before and after lincomycin, chlortetracycline, and amoxicillin treatment by using phylogenetic analysis, bacterial enumeration, and PCR. After the antimicrobial treatment, shifts in microbial community, an increased proportion of resistant bacteria, and genes related to antimicrobial resistance as compared to the day before antimicrobial administration (day 0) were observed. Importantly, a positive correlation between antimicrobial resistance gene expression in different categories, especially those encoding aminoglycoside and β-lactamase and antimicrobial resistance, was observed. These findings demonstrate an important role of antimicrobial usage in animals in the development of antimicrobial resistance, and support the notion that prudent use of antimicrobials in swine is needed to reduce the risk of the emergence of multi-drug resistant zoonotic pathogens.

No MeSH data available.


Related in: MedlinePlus