Limits...
Self-(in)compatibility genotypes of Moroccan apricots indicate differences and similarities in the crop history of European and North African apricot germplasm.

Kodad O, Hegedűs A, Socias i Company R, Halász J - BMC Plant Biol. (2013)

Bottom Line: In otherwise self-incompatible Prunus species, the emergence of loss-of-function in S-haplotypes has resulted in self-compatibility.North Africa seems to have preserved much higher variability of apricot as compared with Europe.The loss of genetic diversity in apricot might be explained by the occurrence of self-compatibility and the length of time that apricot has spent with this breeding system in an environment without its wild relatives, such as the Moroccan oases or Central Europe.

View Article: PubMed Central - HTML - PubMed

Affiliation: Département d'Arboriculture, École Nationale d'Agriculture de Meknès, BP S/40, Meknès, Morocco. osama.kodad@yahoo.es.

ABSTRACT

Background: Allelic diversity of the S-locus is attributed to the genetic relationships among genotypes and sexual reproduction strategy. In otherwise self-incompatible Prunus species, the emergence of loss-of-function in S-haplotypes has resulted in self-compatibility. This information may allow following major stages of crop history. The genetic diversity in the S-locus of local apricots (Prunus armeniaca L.) from different oasis ecosystems in Morocco and the comparison of the occurrence and frequency of S-alleles with other regions may allow testing the validity of previous theories on the origin and dissemination of North African apricots.

Results: The S-genotypes of 55 Moroccan apricot accessions were determined, resulting in 37 self-compatible genotypes, from which 33 were homozygotes for self-compatibility. SC was the most frequent S-allele in this germplasm, followed by S13, S7, S11, S2, S20, S8, and S6. New approaches (CAPS or allele-specific PCR) were designed for a reliable verification of the rare or unexpected alleles. The frequency and distribution of the S-alleles differed among the oases. Some of these alleles, S8, S11, S13 and S20, were formerly detected only in the Irano Caucasian germplasm and are not present in Europe.

Conclusions: Our data supports the Irano-Caucasian origin of the Moroccan apricots and their original introduction by Phoenicians and Arabs through the North African shore. North Africa seems to have preserved much higher variability of apricot as compared with Europe. The loss of genetic diversity in apricot might be explained by the occurrence of self-compatibility and the length of time that apricot has spent with this breeding system in an environment without its wild relatives, such as the Moroccan oases or Central Europe.

Show MeSH

Related in: MedlinePlus

The distribution and frequency of apricot S-alleles in Morocco. The lengths of the black columns are proportional to the percentage frequency of specific S-alleles in a region (marked by grey spot), n is the number of sampled trees in each of the agro-ecosystems.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4219384&req=5

Figure 4: The distribution and frequency of apricot S-alleles in Morocco. The lengths of the black columns are proportional to the percentage frequency of specific S-alleles in a region (marked by grey spot), n is the number of sampled trees in each of the agro-ecosystems.

Mentions: When completing the S-genotype of all the studied apricots (Table 1), seven previously described S-alleles were identified among the Moroccan genotypes. SC was the most frequent S-allele in the tested Moroccan germplasm (occurred in 37 genotypes), followed by S13 (in nine), S7 and S11 (in eight), S2 and S20 (in six), S8 (in two) and S6 (in only one). The frequency and distribution of the S-alleles identified in the present study differed among the oases (Figure 4). In Tighnit and Armed oases (Agdz), almost all (94%) the 31 genotypes were homozygous for the SC-allele (Table 1). In these oases just three known S-alleles (S2, S20 and SC) were detected and allele frequency of SC was 95% (Figure 4). In Skoura oasis, all genotypes were self-compatible and homozygous for the SC-allele. However, in Kelaat M’Gouna oasis six alleles (S2, S7, S8, S11, S13 and S20) were detected and all the genotypes were self-incompatible, carrying different combinations of the SI alleles with S7, S11 and S13 being the most frequent alleles (Table 1), each of them had an allelic frequency of 25% (Figure 4). In Gulmima oasis, eight known alleles (S2, S6, S7, S8, S11, S13, S20 and SC) were detected including the SC-allele, and S20 and SC were the most frequent (21%) alleles (Figure 4). In Gulmima, only three genotypes were self-compatible, all of them heterozygous for the SC-allele. In Rich location (a mountain ecosystem), four alleles (S2, S7, S11 and S13) were found in only three self-incompatible genotypes.


Self-(in)compatibility genotypes of Moroccan apricots indicate differences and similarities in the crop history of European and North African apricot germplasm.

Kodad O, Hegedűs A, Socias i Company R, Halász J - BMC Plant Biol. (2013)

The distribution and frequency of apricot S-alleles in Morocco. The lengths of the black columns are proportional to the percentage frequency of specific S-alleles in a region (marked by grey spot), n is the number of sampled trees in each of the agro-ecosystems.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4219384&req=5

Figure 4: The distribution and frequency of apricot S-alleles in Morocco. The lengths of the black columns are proportional to the percentage frequency of specific S-alleles in a region (marked by grey spot), n is the number of sampled trees in each of the agro-ecosystems.
Mentions: When completing the S-genotype of all the studied apricots (Table 1), seven previously described S-alleles were identified among the Moroccan genotypes. SC was the most frequent S-allele in the tested Moroccan germplasm (occurred in 37 genotypes), followed by S13 (in nine), S7 and S11 (in eight), S2 and S20 (in six), S8 (in two) and S6 (in only one). The frequency and distribution of the S-alleles identified in the present study differed among the oases (Figure 4). In Tighnit and Armed oases (Agdz), almost all (94%) the 31 genotypes were homozygous for the SC-allele (Table 1). In these oases just three known S-alleles (S2, S20 and SC) were detected and allele frequency of SC was 95% (Figure 4). In Skoura oasis, all genotypes were self-compatible and homozygous for the SC-allele. However, in Kelaat M’Gouna oasis six alleles (S2, S7, S8, S11, S13 and S20) were detected and all the genotypes were self-incompatible, carrying different combinations of the SI alleles with S7, S11 and S13 being the most frequent alleles (Table 1), each of them had an allelic frequency of 25% (Figure 4). In Gulmima oasis, eight known alleles (S2, S6, S7, S8, S11, S13, S20 and SC) were detected including the SC-allele, and S20 and SC were the most frequent (21%) alleles (Figure 4). In Gulmima, only three genotypes were self-compatible, all of them heterozygous for the SC-allele. In Rich location (a mountain ecosystem), four alleles (S2, S7, S11 and S13) were found in only three self-incompatible genotypes.

Bottom Line: In otherwise self-incompatible Prunus species, the emergence of loss-of-function in S-haplotypes has resulted in self-compatibility.North Africa seems to have preserved much higher variability of apricot as compared with Europe.The loss of genetic diversity in apricot might be explained by the occurrence of self-compatibility and the length of time that apricot has spent with this breeding system in an environment without its wild relatives, such as the Moroccan oases or Central Europe.

View Article: PubMed Central - HTML - PubMed

Affiliation: Département d'Arboriculture, École Nationale d'Agriculture de Meknès, BP S/40, Meknès, Morocco. osama.kodad@yahoo.es.

ABSTRACT

Background: Allelic diversity of the S-locus is attributed to the genetic relationships among genotypes and sexual reproduction strategy. In otherwise self-incompatible Prunus species, the emergence of loss-of-function in S-haplotypes has resulted in self-compatibility. This information may allow following major stages of crop history. The genetic diversity in the S-locus of local apricots (Prunus armeniaca L.) from different oasis ecosystems in Morocco and the comparison of the occurrence and frequency of S-alleles with other regions may allow testing the validity of previous theories on the origin and dissemination of North African apricots.

Results: The S-genotypes of 55 Moroccan apricot accessions were determined, resulting in 37 self-compatible genotypes, from which 33 were homozygotes for self-compatibility. SC was the most frequent S-allele in this germplasm, followed by S13, S7, S11, S2, S20, S8, and S6. New approaches (CAPS or allele-specific PCR) were designed for a reliable verification of the rare or unexpected alleles. The frequency and distribution of the S-alleles differed among the oases. Some of these alleles, S8, S11, S13 and S20, were formerly detected only in the Irano Caucasian germplasm and are not present in Europe.

Conclusions: Our data supports the Irano-Caucasian origin of the Moroccan apricots and their original introduction by Phoenicians and Arabs through the North African shore. North Africa seems to have preserved much higher variability of apricot as compared with Europe. The loss of genetic diversity in apricot might be explained by the occurrence of self-compatibility and the length of time that apricot has spent with this breeding system in an environment without its wild relatives, such as the Moroccan oases or Central Europe.

Show MeSH
Related in: MedlinePlus