Limits...
Virtual reality based support system for layout planning and programming of an industrial robotic work cell.

Yap HJ, Taha Z, Dawal SZ, Chang SW - PLoS ONE (2014)

Bottom Line: A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information.Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator.The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia.

ABSTRACT
Traditional robotic work cell design and programming are considered inefficient and outdated in current industrial and market demands. In this research, virtual reality (VR) technology is used to improve human-robot interface, whereby complicated commands or programming knowledge is not required. The proposed solution, known as VR-based Programming of a Robotic Work Cell (VR-Rocell), consists of two sub-programmes, which are VR-Robotic Work Cell Layout (VR-RoWL) and VR-based Robot Teaching System (VR-RoT). VR-RoWL is developed to assign the layout design for an industrial robotic work cell, whereby VR-RoT is developed to overcome safety issues and lack of trained personnel in robot programming. Simple and user-friendly interfaces are designed for inexperienced users to generate robot commands without damaging the robot or interrupting the production line. The user is able to attempt numerous times to attain an optimum solution. A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information. Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator. The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme. Therefore, it is concluded that the virtual reality based solution approach can be implemented in an industrial robotic work cell.

Show MeSH
Assembly process chart for case study.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4215904&req=5

pone-0109692-g008: Assembly process chart for case study.

Mentions: The assembly process of the electronics casing is identified during the design stage, as shown in Figure 8. Firstly, the main body (O-1) is placed at its position in the jig. Following this, the left heat sink assembly (O-2) is fixed onto the main body using two screws. Finally, the right heat sink assembly (O-2) is fixed onto the main body using two other screws.


Virtual reality based support system for layout planning and programming of an industrial robotic work cell.

Yap HJ, Taha Z, Dawal SZ, Chang SW - PLoS ONE (2014)

Assembly process chart for case study.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4215904&req=5

pone-0109692-g008: Assembly process chart for case study.
Mentions: The assembly process of the electronics casing is identified during the design stage, as shown in Figure 8. Firstly, the main body (O-1) is placed at its position in the jig. Following this, the left heat sink assembly (O-2) is fixed onto the main body using two screws. Finally, the right heat sink assembly (O-2) is fixed onto the main body using two other screws.

Bottom Line: A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information.Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator.The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia.

ABSTRACT
Traditional robotic work cell design and programming are considered inefficient and outdated in current industrial and market demands. In this research, virtual reality (VR) technology is used to improve human-robot interface, whereby complicated commands or programming knowledge is not required. The proposed solution, known as VR-based Programming of a Robotic Work Cell (VR-Rocell), consists of two sub-programmes, which are VR-Robotic Work Cell Layout (VR-RoWL) and VR-based Robot Teaching System (VR-RoT). VR-RoWL is developed to assign the layout design for an industrial robotic work cell, whereby VR-RoT is developed to overcome safety issues and lack of trained personnel in robot programming. Simple and user-friendly interfaces are designed for inexperienced users to generate robot commands without damaging the robot or interrupting the production line. The user is able to attempt numerous times to attain an optimum solution. A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information. Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator. The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme. Therefore, it is concluded that the virtual reality based solution approach can be implemented in an industrial robotic work cell.

Show MeSH