Limits...
Fluid-dynamic optimal design of helical vascular graft for stenotic disturbed flow.

Ha H, Hwang D, Choi WR, Baek J, Lee SJ - PLoS ONE (2014)

Bottom Line: Results showed that the swirling intensity and helicity of the swirling flow have a linear relation with a modified Germano number (Gn*) of the helical pipe.In addition, the swirling flow generated a beneficial flow structure at the stenosis by reducing the size of the recirculation flow under steady and pulsatile flow conditions.Therefore, the beneficial effects of a helical graft on the flow field can be estimated by using the magnitude of Gn*.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea.

ABSTRACT
Although a helical configuration of a prosthetic vascular graft appears to be clinically beneficial in suppressing thrombosis and intimal hyperplasia, an optimization of a helical design has yet to be achieved because of the lack of a detailed understanding on hemodynamic features in helical grafts and their fluid dynamic influences. In the present study, the swirling flow in a helical graft was hypothesized to have beneficial influences on a disturbed flow structure such as stenotic flow. The characteristics of swirling flows generated by helical tubes with various helical pitches and curvatures were investigated to prove the hypothesis. The fluid dynamic influences of these helical tubes on stenotic flow were quantitatively analysed by using a particle image velocimetry technique. Results showed that the swirling intensity and helicity of the swirling flow have a linear relation with a modified Germano number (Gn*) of the helical pipe. In addition, the swirling flow generated a beneficial flow structure at the stenosis by reducing the size of the recirculation flow under steady and pulsatile flow conditions. Therefore, the beneficial effects of a helical graft on the flow field can be estimated by using the magnitude of Gn*. Finally, an optimized helical design with a maximum Gn* was suggested for the future design of a vascular graft.

Show MeSH

Related in: MedlinePlus

The effect of axial velocity skewness on reattachment length.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4215892&req=5

pone-0111047-g013: The effect of axial velocity skewness on reattachment length.

Mentions: The effect of the axial velocity skewness on L/D was analysed to confirm whether the reduction of L/D was caused by the swirling secondary flow (figure 13). The skewness of the axial velocity profile was estimated according to the centre of the axial momentum flux as(14)


Fluid-dynamic optimal design of helical vascular graft for stenotic disturbed flow.

Ha H, Hwang D, Choi WR, Baek J, Lee SJ - PLoS ONE (2014)

The effect of axial velocity skewness on reattachment length.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4215892&req=5

pone-0111047-g013: The effect of axial velocity skewness on reattachment length.
Mentions: The effect of the axial velocity skewness on L/D was analysed to confirm whether the reduction of L/D was caused by the swirling secondary flow (figure 13). The skewness of the axial velocity profile was estimated according to the centre of the axial momentum flux as(14)

Bottom Line: Results showed that the swirling intensity and helicity of the swirling flow have a linear relation with a modified Germano number (Gn*) of the helical pipe.In addition, the swirling flow generated a beneficial flow structure at the stenosis by reducing the size of the recirculation flow under steady and pulsatile flow conditions.Therefore, the beneficial effects of a helical graft on the flow field can be estimated by using the magnitude of Gn*.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea.

ABSTRACT
Although a helical configuration of a prosthetic vascular graft appears to be clinically beneficial in suppressing thrombosis and intimal hyperplasia, an optimization of a helical design has yet to be achieved because of the lack of a detailed understanding on hemodynamic features in helical grafts and their fluid dynamic influences. In the present study, the swirling flow in a helical graft was hypothesized to have beneficial influences on a disturbed flow structure such as stenotic flow. The characteristics of swirling flows generated by helical tubes with various helical pitches and curvatures were investigated to prove the hypothesis. The fluid dynamic influences of these helical tubes on stenotic flow were quantitatively analysed by using a particle image velocimetry technique. Results showed that the swirling intensity and helicity of the swirling flow have a linear relation with a modified Germano number (Gn*) of the helical pipe. In addition, the swirling flow generated a beneficial flow structure at the stenosis by reducing the size of the recirculation flow under steady and pulsatile flow conditions. Therefore, the beneficial effects of a helical graft on the flow field can be estimated by using the magnitude of Gn*. Finally, an optimized helical design with a maximum Gn* was suggested for the future design of a vascular graft.

Show MeSH
Related in: MedlinePlus