Limits...
Microbial succession and the functional potential during the fermentation of Chinese soy sauce brine.

Sulaiman J, Gan HM, Yin WF, Chan KG - Front Microbiol (2014)

Bottom Line: Whole genome shotgun method revealed that the fermentation brine was dominated by the bacterial genus Weissella and later dominated by the fungal genus Candida.This was supported by the detection of ethanol with stable decrease of pH values.To the best of our knowledge, this is the first study that explores the temporal changes in microbial successions over a period of 6 months, through metagenome shotgun sequencing in traditional Chinese soy sauce fermentation and the biological processes therein.

View Article: PubMed Central - PubMed

Affiliation: Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia.

ABSTRACT
The quality of traditional Chinese soy sauce is determined by microbial communities and their inter-related metabolic roles in the fermentation tank. In this study, traditional Chinese soy sauce brine samples were obtained periodically to monitor the transitions of the microbial population and functional properties during the 6 months of fermentation process. Whole genome shotgun method revealed that the fermentation brine was dominated by the bacterial genus Weissella and later dominated by the fungal genus Candida. Metabolic reconstruction of the metagenome sequences demonstrated a characteristic profile of heterotrophic fermentation of proteins and carbohydrates. This was supported by the detection of ethanol with stable decrease of pH values. To the best of our knowledge, this is the first study that explores the temporal changes in microbial successions over a period of 6 months, through metagenome shotgun sequencing in traditional Chinese soy sauce fermentation and the biological processes therein.

No MeSH data available.


Traditional Chinese soy sauce fermentation brine functional capabilities and diversities. % Classified (Y-axis) represents the percentage of annotated predicted proteins from the metagenome assembly assigned to different Kyoto encyclopedia of genes and genomes (KEGG) second-level pathways. Letters “a” and “b” above bar indicates significant difference (p-value < 0.05) in comparison to Month 0 and Month 1 respectively.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4215829&req=5

Figure 4: Traditional Chinese soy sauce fermentation brine functional capabilities and diversities. % Classified (Y-axis) represents the percentage of annotated predicted proteins from the metagenome assembly assigned to different Kyoto encyclopedia of genes and genomes (KEGG) second-level pathways. Letters “a” and “b” above bar indicates significant difference (p-value < 0.05) in comparison to Month 0 and Month 1 respectively.

Mentions: A total of 176 predicted pathways were identified in this study, enabling better understanding toward the microbial functional capabilities. There was significant mean difference of CDS among the functional categories by post hoc test Bonferroni’s procedures. The metabolic reconstruction using KEGG showed an average of 3872 CDS (16.96%; p < 0.001) was classified under carbohydrate metabolism and was consistently found in all of the soy sauce metagenome libraries. Amino acid metabolism, nt metabolism, and energy metabolism showed an average of 2404 CDS (10.53%; p < 0.01), 1666 CDS (7.29%; p < 0.05), and 1441 CDS (6.31%; p < 0.01), respectively (Figure 4). Additional statistical analysis using STAMP also showed significant enrichment genes pertaining to membrane transport and signaling molecules and interaction in the later stage of the fermentation.


Microbial succession and the functional potential during the fermentation of Chinese soy sauce brine.

Sulaiman J, Gan HM, Yin WF, Chan KG - Front Microbiol (2014)

Traditional Chinese soy sauce fermentation brine functional capabilities and diversities. % Classified (Y-axis) represents the percentage of annotated predicted proteins from the metagenome assembly assigned to different Kyoto encyclopedia of genes and genomes (KEGG) second-level pathways. Letters “a” and “b” above bar indicates significant difference (p-value < 0.05) in comparison to Month 0 and Month 1 respectively.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4215829&req=5

Figure 4: Traditional Chinese soy sauce fermentation brine functional capabilities and diversities. % Classified (Y-axis) represents the percentage of annotated predicted proteins from the metagenome assembly assigned to different Kyoto encyclopedia of genes and genomes (KEGG) second-level pathways. Letters “a” and “b” above bar indicates significant difference (p-value < 0.05) in comparison to Month 0 and Month 1 respectively.
Mentions: A total of 176 predicted pathways were identified in this study, enabling better understanding toward the microbial functional capabilities. There was significant mean difference of CDS among the functional categories by post hoc test Bonferroni’s procedures. The metabolic reconstruction using KEGG showed an average of 3872 CDS (16.96%; p < 0.001) was classified under carbohydrate metabolism and was consistently found in all of the soy sauce metagenome libraries. Amino acid metabolism, nt metabolism, and energy metabolism showed an average of 2404 CDS (10.53%; p < 0.01), 1666 CDS (7.29%; p < 0.05), and 1441 CDS (6.31%; p < 0.01), respectively (Figure 4). Additional statistical analysis using STAMP also showed significant enrichment genes pertaining to membrane transport and signaling molecules and interaction in the later stage of the fermentation.

Bottom Line: Whole genome shotgun method revealed that the fermentation brine was dominated by the bacterial genus Weissella and later dominated by the fungal genus Candida.This was supported by the detection of ethanol with stable decrease of pH values.To the best of our knowledge, this is the first study that explores the temporal changes in microbial successions over a period of 6 months, through metagenome shotgun sequencing in traditional Chinese soy sauce fermentation and the biological processes therein.

View Article: PubMed Central - PubMed

Affiliation: Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia.

ABSTRACT
The quality of traditional Chinese soy sauce is determined by microbial communities and their inter-related metabolic roles in the fermentation tank. In this study, traditional Chinese soy sauce brine samples were obtained periodically to monitor the transitions of the microbial population and functional properties during the 6 months of fermentation process. Whole genome shotgun method revealed that the fermentation brine was dominated by the bacterial genus Weissella and later dominated by the fungal genus Candida. Metabolic reconstruction of the metagenome sequences demonstrated a characteristic profile of heterotrophic fermentation of proteins and carbohydrates. This was supported by the detection of ethanol with stable decrease of pH values. To the best of our knowledge, this is the first study that explores the temporal changes in microbial successions over a period of 6 months, through metagenome shotgun sequencing in traditional Chinese soy sauce fermentation and the biological processes therein.

No MeSH data available.