Limits...
Microbial succession and the functional potential during the fermentation of Chinese soy sauce brine.

Sulaiman J, Gan HM, Yin WF, Chan KG - Front Microbiol (2014)

Bottom Line: Whole genome shotgun method revealed that the fermentation brine was dominated by the bacterial genus Weissella and later dominated by the fungal genus Candida.This was supported by the detection of ethanol with stable decrease of pH values.To the best of our knowledge, this is the first study that explores the temporal changes in microbial successions over a period of 6 months, through metagenome shotgun sequencing in traditional Chinese soy sauce fermentation and the biological processes therein.

View Article: PubMed Central - PubMed

Affiliation: Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia.

ABSTRACT
The quality of traditional Chinese soy sauce is determined by microbial communities and their inter-related metabolic roles in the fermentation tank. In this study, traditional Chinese soy sauce brine samples were obtained periodically to monitor the transitions of the microbial population and functional properties during the 6 months of fermentation process. Whole genome shotgun method revealed that the fermentation brine was dominated by the bacterial genus Weissella and later dominated by the fungal genus Candida. Metabolic reconstruction of the metagenome sequences demonstrated a characteristic profile of heterotrophic fermentation of proteins and carbohydrates. This was supported by the detection of ethanol with stable decrease of pH values. To the best of our knowledge, this is the first study that explores the temporal changes in microbial successions over a period of 6 months, through metagenome shotgun sequencing in traditional Chinese soy sauce fermentation and the biological processes therein.

No MeSH data available.


Related in: MedlinePlus

Physicochemical changes in the traditional Chinese soy sauce fermentation brine (A) pH and acidity mean values at various fermentation stages. Data are expressed as the means of ± SEM value of triplicates (pH value) and duplicates (acidity), (B) NaCl and reducing sugar content, (C) ethanol concentration of traditional Chinese soy sauce and (D) changes in percentages of total nitrogen content. Data are presented as means ± SEM values of duplicates.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4215829&req=5

Figure 1: Physicochemical changes in the traditional Chinese soy sauce fermentation brine (A) pH and acidity mean values at various fermentation stages. Data are expressed as the means of ± SEM value of triplicates (pH value) and duplicates (acidity), (B) NaCl and reducing sugar content, (C) ethanol concentration of traditional Chinese soy sauce and (D) changes in percentages of total nitrogen content. Data are presented as means ± SEM values of duplicates.

Mentions: The pH value showed a gradual decrease over time. At day zero, the initial pH value of pH 5.3 at day zero decreased to pH 4.3 on the sixth month. The total acidity content increased steadily from 0.15% (w/v) at day zero to 0.53% (w/v) at month six (Figure 1A). The reducing sugar level peaked at the third month and decreased to less than 0.3% (w/v) by the end of the fermentation (Figure 1B). The soy sauce mash salt concentration was at 2.89 M at day zero and ended at 3.44 M (Figure 1B). Ethanol concentration was not detected at the beginning but began to increase from the fourth month onward and achieved its maximal level of 0.13% (w/w) by the fifth month. By the end of the fermentation, the ethanol concentration was at 0.1% (w/w; Figure 1C). The total nitrogen level began to increase after a month into the fermentation process and was at 1% by the end of the sixth month (Figure 1D).


Microbial succession and the functional potential during the fermentation of Chinese soy sauce brine.

Sulaiman J, Gan HM, Yin WF, Chan KG - Front Microbiol (2014)

Physicochemical changes in the traditional Chinese soy sauce fermentation brine (A) pH and acidity mean values at various fermentation stages. Data are expressed as the means of ± SEM value of triplicates (pH value) and duplicates (acidity), (B) NaCl and reducing sugar content, (C) ethanol concentration of traditional Chinese soy sauce and (D) changes in percentages of total nitrogen content. Data are presented as means ± SEM values of duplicates.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4215829&req=5

Figure 1: Physicochemical changes in the traditional Chinese soy sauce fermentation brine (A) pH and acidity mean values at various fermentation stages. Data are expressed as the means of ± SEM value of triplicates (pH value) and duplicates (acidity), (B) NaCl and reducing sugar content, (C) ethanol concentration of traditional Chinese soy sauce and (D) changes in percentages of total nitrogen content. Data are presented as means ± SEM values of duplicates.
Mentions: The pH value showed a gradual decrease over time. At day zero, the initial pH value of pH 5.3 at day zero decreased to pH 4.3 on the sixth month. The total acidity content increased steadily from 0.15% (w/v) at day zero to 0.53% (w/v) at month six (Figure 1A). The reducing sugar level peaked at the third month and decreased to less than 0.3% (w/v) by the end of the fermentation (Figure 1B). The soy sauce mash salt concentration was at 2.89 M at day zero and ended at 3.44 M (Figure 1B). Ethanol concentration was not detected at the beginning but began to increase from the fourth month onward and achieved its maximal level of 0.13% (w/w) by the fifth month. By the end of the fermentation, the ethanol concentration was at 0.1% (w/w; Figure 1C). The total nitrogen level began to increase after a month into the fermentation process and was at 1% by the end of the sixth month (Figure 1D).

Bottom Line: Whole genome shotgun method revealed that the fermentation brine was dominated by the bacterial genus Weissella and later dominated by the fungal genus Candida.This was supported by the detection of ethanol with stable decrease of pH values.To the best of our knowledge, this is the first study that explores the temporal changes in microbial successions over a period of 6 months, through metagenome shotgun sequencing in traditional Chinese soy sauce fermentation and the biological processes therein.

View Article: PubMed Central - PubMed

Affiliation: Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia.

ABSTRACT
The quality of traditional Chinese soy sauce is determined by microbial communities and their inter-related metabolic roles in the fermentation tank. In this study, traditional Chinese soy sauce brine samples were obtained periodically to monitor the transitions of the microbial population and functional properties during the 6 months of fermentation process. Whole genome shotgun method revealed that the fermentation brine was dominated by the bacterial genus Weissella and later dominated by the fungal genus Candida. Metabolic reconstruction of the metagenome sequences demonstrated a characteristic profile of heterotrophic fermentation of proteins and carbohydrates. This was supported by the detection of ethanol with stable decrease of pH values. To the best of our knowledge, this is the first study that explores the temporal changes in microbial successions over a period of 6 months, through metagenome shotgun sequencing in traditional Chinese soy sauce fermentation and the biological processes therein.

No MeSH data available.


Related in: MedlinePlus