Limits...
Multisensory training can promote or impede visual perceptual learning of speech stimuli: visual-tactile vs. visual-auditory training.

Eberhardt SP, Auer ET, Bernstein LE - Front Hum Neurosci (2014)

Bottom Line: Here, impeder and promoter effects were sought in normal-hearing adults who participated in lipreading training.Across this and previous studies, multisensory training effects depended on the functional relationship between pathways engaged during training.Two principles are proposed to account for stimulus effects: (1) Stimuli presented to the trainee's primary perceptual pathway will impede learning by a lower-rank pathway. (2) Stimuli presented to the trainee's lower rank perceptual pathway will promote learning by a higher-rank pathway.

View Article: PubMed Central - PubMed

Affiliation: Communication Neuroscience Laboratory, Department of Speech and Hearing Sciences, George Washington University Washington, DC, USA.

ABSTRACT
In a series of studies we have been investigating how multisensory training affects unisensory perceptual learning with speech stimuli. Previously, we reported that audiovisual (AV) training with speech stimuli can promote auditory-only (AO) perceptual learning in normal-hearing adults but can impede learning in congenitally deaf adults with late-acquired cochlear implants. Here, impeder and promoter effects were sought in normal-hearing adults who participated in lipreading training. In Experiment 1, visual-only (VO) training on paired associations between CVCVC nonsense word videos and nonsense pictures demonstrated that VO words could be learned to a high level of accuracy even by poor lipreaders. In Experiment 2, visual-auditory (VA) training in the same paradigm but with the addition of synchronous vocoded acoustic speech impeded VO learning of the stimuli in the paired-associates paradigm. In Experiment 3, the vocoded AO stimuli were shown to be less informative than the VO speech. Experiment 4 combined vibrotactile speech stimuli with the visual stimuli during training. Vibrotactile stimuli were shown to promote visual perceptual learning. In Experiment 5, no-training controls were used to show that training with visual speech carried over to consonant identification of untrained CVCVC stimuli but not to lipreading words in sentences. Across this and previous studies, multisensory training effects depended on the functional relationship between pathways engaged during training. Two principles are proposed to account for stimulus effects: (1) Stimuli presented to the trainee's primary perceptual pathway will impede learning by a lower-rank pathway. (2) Stimuli presented to the trainee's lower rank perceptual pathway will promote learning by a higher-rank pathway. The mechanisms supporting these principles are discussed in light of multisensory reverse hierarchy theory (RHT).

No MeSH data available.


Histogram of numbers of participants sorted on whether they achieved criterion during training (left column) or not (right column). Row 1, VA; Row 2, VO; Row 3, VT. Normal curves are fitted to each distribution.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4215828&req=5

Figure 10: Histogram of numbers of participants sorted on whether they achieved criterion during training (left column) or not (right column). Row 1, VA; Row 2, VO; Row 3, VT. Normal curves are fitted to each distribution.

Mentions: One of the concerns in evaluating the results here was whether initial lipreading ability would control learning in the paired-associates paradigm. But results showed that initial lipreading ability was not a controlling factor for paired-associates learning, although it did correlate with the untrained consonant identification and lipreading task scores. Figure 10 shows histograms of the lipreading screening scores for the three groups that received training with visual stimuli (VA, VO, VT). The column labeled “below criterion” shows the participants who were unable to achieve the score of 70.9% correct on Block 3 of Lists 2–4. The “criterion” column shows those who achieved criterion or better. In both columns, there were participants with screening scores at or below approximately 20% words correct. Both columns show that the overall distributions of lipreading screening scores were approximately the same.


Multisensory training can promote or impede visual perceptual learning of speech stimuli: visual-tactile vs. visual-auditory training.

Eberhardt SP, Auer ET, Bernstein LE - Front Hum Neurosci (2014)

Histogram of numbers of participants sorted on whether they achieved criterion during training (left column) or not (right column). Row 1, VA; Row 2, VO; Row 3, VT. Normal curves are fitted to each distribution.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4215828&req=5

Figure 10: Histogram of numbers of participants sorted on whether they achieved criterion during training (left column) or not (right column). Row 1, VA; Row 2, VO; Row 3, VT. Normal curves are fitted to each distribution.
Mentions: One of the concerns in evaluating the results here was whether initial lipreading ability would control learning in the paired-associates paradigm. But results showed that initial lipreading ability was not a controlling factor for paired-associates learning, although it did correlate with the untrained consonant identification and lipreading task scores. Figure 10 shows histograms of the lipreading screening scores for the three groups that received training with visual stimuli (VA, VO, VT). The column labeled “below criterion” shows the participants who were unable to achieve the score of 70.9% correct on Block 3 of Lists 2–4. The “criterion” column shows those who achieved criterion or better. In both columns, there were participants with screening scores at or below approximately 20% words correct. Both columns show that the overall distributions of lipreading screening scores were approximately the same.

Bottom Line: Here, impeder and promoter effects were sought in normal-hearing adults who participated in lipreading training.Across this and previous studies, multisensory training effects depended on the functional relationship between pathways engaged during training.Two principles are proposed to account for stimulus effects: (1) Stimuli presented to the trainee's primary perceptual pathway will impede learning by a lower-rank pathway. (2) Stimuli presented to the trainee's lower rank perceptual pathway will promote learning by a higher-rank pathway.

View Article: PubMed Central - PubMed

Affiliation: Communication Neuroscience Laboratory, Department of Speech and Hearing Sciences, George Washington University Washington, DC, USA.

ABSTRACT
In a series of studies we have been investigating how multisensory training affects unisensory perceptual learning with speech stimuli. Previously, we reported that audiovisual (AV) training with speech stimuli can promote auditory-only (AO) perceptual learning in normal-hearing adults but can impede learning in congenitally deaf adults with late-acquired cochlear implants. Here, impeder and promoter effects were sought in normal-hearing adults who participated in lipreading training. In Experiment 1, visual-only (VO) training on paired associations between CVCVC nonsense word videos and nonsense pictures demonstrated that VO words could be learned to a high level of accuracy even by poor lipreaders. In Experiment 2, visual-auditory (VA) training in the same paradigm but with the addition of synchronous vocoded acoustic speech impeded VO learning of the stimuli in the paired-associates paradigm. In Experiment 3, the vocoded AO stimuli were shown to be less informative than the VO speech. Experiment 4 combined vibrotactile speech stimuli with the visual stimuli during training. Vibrotactile stimuli were shown to promote visual perceptual learning. In Experiment 5, no-training controls were used to show that training with visual speech carried over to consonant identification of untrained CVCVC stimuli but not to lipreading words in sentences. Across this and previous studies, multisensory training effects depended on the functional relationship between pathways engaged during training. Two principles are proposed to account for stimulus effects: (1) Stimuli presented to the trainee's primary perceptual pathway will impede learning by a lower-rank pathway. (2) Stimuli presented to the trainee's lower rank perceptual pathway will promote learning by a higher-rank pathway. The mechanisms supporting these principles are discussed in light of multisensory reverse hierarchy theory (RHT).

No MeSH data available.